Dissipation energy in viscoelastic solids under multiaxial loads
Abstract
On the basis of the three-dimensional constitutive equations for strains resulting from the Kelvin-Voigt’s model and modified Hooke’s law for multiaxial stress in viscoelastic solids, the formulae for the energy dissipated in a given time per unit volume have been derived. It is shown that after application or removal of triaxial static load there is no difference in the time functions governing the dissipation of strain energy of volume change and the dissipation of strain energy of distortion. Harmonic in-phase stress and harmonic out-of-phase stress as well as multiaxial periodic stress are also considered. It is demonstrated that in the process of energy dissipation due to normal and shear stress components the role of the latter is dominant.
Keywords:
viscoelastic material, multiaxial stress, energy dissipation, static load, vibratory loadDetails
- Issue
- Vol. 15 No. 1(55) (2008)
- Section
- Latest Articles
- Published
- 10-06-2008
- DOI:
- https://doi.org/10.2478/v10012-007-0047-4
- Licencja:
-
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Open Access License
This journal provides immediate open access to its content under the Creative Commons BY 4.0 license. Authors who publish with this journal retain all copyrights and agree to the terms of the CC BY 4.0 license.