MODEL PREDICTIVE SUPER-TWISTING SLIDING MODE CONTROL FOR AN AUTONOMOUS SURFACE VEHICLE
Abstract
This paper presents a new robust Model Predictive Control (MPC) algorithm for trajectory tracking of an Autonomous Surface Vehicle (ASV) in presence of the time-varying external disturbances including winds, waves and ocean currents as well as dynamical uncertainties. For fulfilling the robustness property, a sliding mode control-based procedure for designing of MPC and a super-twisting term are adopted. The MPC algorithm has been known as an effective approach for the implementation simplicity and its fast dynamic response. The proposed hybrid controller has been implemented in MATLAB / Simulink environment. The results for the combined Model Predictive Super-Twisting Sliding Mode Control (MP-STSMC) algorithm have shown that it significantly outperforms conventional MPC algorithm in terms of the transient response, robustness and steady state response and presents an effective chattering attenuation in comparison with the Super-Twisting Sliding Mode Control (STSMC) algorithm.
Keywords:
utonomous Surface Vehicle, Model Predictive Control, Sliding Mode Control, Super-Twisting Algorithm, Chattering AttenuationDetails
- Issue
- Vol. 26 No. 3(103) (2019)
- Section
- Latest Articles
- Published
- 18-10-2019
- DOI:
- https://doi.org/10.2478/pomr-2019-0057
- Licencja:
-
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Open Access License
This journal provides immediate open access to its content under the Creative Commons BY 4.0 license. Authors who publish with this journal retain all copyrights and agree to the terms of the CC BY 4.0 license.