Journals - MOST Wiedzy

Logo

ROBUST MODEL PREDICTIVE CONTROL FOR AUTONOMOUS UNDERWATER VEHICLE – MANIPULATOR SYSTEM WITH FUZZY COMPENSATOR

Abstract

This paper proposes an improved Model Predictive Control (MPC) approach including a fuzzy compensator in order to track desired trajectories of autonomous Underwater Vehicle Manipulator Systems (UVMS). The tracking performance can be affected by robot dynamical model uncertainties and applied external disturbances. Nevertheless, the MPC as a known proficient nonlinear control approach should be improved by the uncertainty estimator and disturbance compensator particularly in high nonlinear circumstances such as underwater environment in which operation of the UVMS is extremely impressed by added nonlinear terms to its model. In this research, a new methodology is proposed to promote robustness virtue of MPC that is done by designing a fuzzy compensator based on the uncertainty and disturbance estimation in order to reduce or even omit undesired effects of these perturbations. The proposed control design is compared with conventional MPC control approach to confirm the superiority of the proposed approach in terms of robustness against uncertainties, guaranteed stability and precision.

Keywords:

UVMS, Model Predictive Control, Fuzzy Compensator

Details

Issue
Vol. 26 No. 2(102) (2019)
Section
Latest Articles
Published
12-07-2019
DOI:
https://doi.org/10.2478/pomr-2019-0030
Licencja:
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Open Access License

This journal provides immediate open access to its content under the Creative Commons BY 4.0 license. Authors who publish with this journal retain all copyrights and agree to the terms of the CC BY 4.0 license.

 

Authors

Hossein Nejatbakhsh Esfahani

Gdansk University of Technology

Download paper