An adaptive island model of population for neuroevolutionary ship handling
Abstract
This study presents a method for the dynamic value assignment of evolutionary parameters to accelerate, automate and generalise the neuroevolutionary method of ship handling for different navigational tasks and in different environmental conditions. The island model of population is used in the modified neuroevolutionary method to achieve this goal. Three different navigational situations are considered in the simulation, namely, passing through restricted waters, crossing with another vessel and overtaking in the open sea. The results of the simulation examples show that the island model performs better than a single non-divided population and may accelerate some complex and dynamic navigational tasks. This adaptive island-based neuroevolutionary system used for the COLREG manoeuvres and for the finding safe ship’s route to a given destination in restricted waters increases the accuracy and flexibility of the simulation process. The time statistics show that the time of simulation of island NEAT was shortened by 6.8% to 27.1% in comparison to modified NEAT method.
Keywords:
artificial neural networks, evolutionary algorithms, neuroevolution, ship movement control, ship manoeuvringDetails
- Issue
- Vol. 28 No. 4(112) (2021)
- Section
- Latest Articles
- Published
- 19-01-2022
- DOI:
- https://doi.org/10.2478/pomr-2021-0056
- Licencja:
-
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Open Access License
This journal provides immediate open access to its content under the Creative Commons BY 4.0 license. Authors who publish with this journal retain all copyrights and agree to the terms of the CC BY 4.0 license.