Journals - MOST Wiedzy

Logo

Test research on the resistance performance of high-speed trimaran planing hull

Abstract

In order to identify high-speed navigation ability of trimaran planing hull, as well as investigate the characteristics of its resistance and hull form, ship model tests were conducted to measure resistance, trim and heaving under different displacements and gravity centre locations. The test results were then used to study the influence of spray strips on resistance and sea-keeping qualities. Moreover, different planing surfaces were compared in the model tests which helped to look into influence of steps on hull resistance and its moving position. Also, the resistance features of monohull and trimaran planing hulls, both with and without steps, were compared to each other. From the tests it can be concluded that: the two auxiliary side hulls increase aerodynamic lift at high-speed motion, which improves the hydrodynamic performance; the trimaran planing hull has also excellent longitudinal stability and low wave-making action; when Fr∇ > 8, its motion is still stable and two distinct resistance peaks and two changes of sailing state (the second change is smaller) appear; spray strips are favourable for sea-keeping qualities at high speed. The change trends before the second resistance peak as to the resistance and sailing behaviour of trimaran planing hull without steps are the same as for monohull planing hull without steps. but when steps in both hulls exist the change trends are different; more specifically: trimaran planing hull with steps has only one resistance peak and its resistance increases along with its speed increasing, and the resistance is improved at the increasing speed as the number of steps increases.

Keywords:

trimaran planing hull, side hulls, high speed, step, resistance, model test

Details

Issue
Vol. 20 No. 4(80) (2013)
Section
Latest Articles
Published
31-12-2013
DOI:
https://doi.org/10.2478/pomr-2013-0040
Licencja:
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Open Access License

This journal provides immediate open access to its content under the Creative Commons BY 4.0 license. Authors who publish with this journal retain all copyrights and agree to the terms of the CC BY 4.0 license.

 

Authors

  • Weijia Ma

    Harbin Engineering University, College of shipbuilding Engineering
  • Huawei Sun

    AVIC Aerodynamics Research Institute
  • Jin Zou

    Harbin Engineering University
  • Heng Yang

    Harbin Engineering University

Download paper