Journals - MOST Wiedzy

Logo

VIBRATION REDUCTION DESIGN WITH HYBRID STRUCTURES AND TOPOLOGY OPTIMIZATION

Abstract

The hybrid structures show excellent performance on vibration reduction for ship, aircraft and spacecraft designs. Meanwhile, the topology optimization is widely used for structure vibration reduction and weight control. The design of hybrid structures considering simultaneous materials selection and topology optimization are big challenges in theoretical study and engineering applications. In this paper, according to the proposed laminate component method (LCM) and solid isotropic microstructure with penalty (SIMP) method, the mathematical formulations are presented for concurrent materials selection and topology optimizations of hybrid structures. Thickness distributions of the plies in laminate components are defined as materials selection design variables by LCM method. Relative densities of elements in the components are defined as topology design variables by SIMP method. Design examples of hybrid 3-bar truss structures and hybrid floating raft with vibration reduction requirements verified the effectiveness of the presented optimization models.

Keywords:

hybrid structure, vibration reduction, materials selection, topology optimization

Details

Issue
Vol. 23 No. S1(91) (2016)
Section
Latest Articles
Published
16-11-2016
DOI:
https://doi.org/10.1515/pomr-2016-0040
Licencja:
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Open Access License

This journal provides immediate open access to its content under the Creative Commons BY 4.0 license. Authors who publish with this journal retain all copyrights and agree to the terms of the CC BY 4.0 license.

 

Authors

  • Fali Huo

    Jiangsu University of Science and Technology, School of Naval Architecture & Ocean Engineering
  • Deqing Yang

    Shanghai Jiao Tong University, School of Naval Architecture, Ocean and Civil Engineering
  • Yinzhi Zhao

    Jiangsu University of Science and Technology, School of Naval Architecture & Ocean Engineering

Download paper