MULTI-AUV DISTRIBUTED TASK ALLOCATION BASED ON THE DIFFERENTIAL EVOLUTION QUANTUM BEE COLONY OPTIMIZATION ALGORITHM
Abstract
The multi-autonomous underwater vehicle (AUV) distributed task allocation model of a contract net, which introduces an equilibrium coefficient, has been established to solve the multi-AUV distributed task allocation problem. A differential evolution quantum artificial bee colony (DEQABC) optimization algorithm is proposed to solve the multi-AUV optimal task allocation scheme. The algorithm is based on the quantum artificial bee colony algorithm, and it takes advantage of the characteristics of the differential evolution algorithm. This algorithm can remember the individual optimal solution in the population evolution and internal information sharing in groups and obtain the optimal solution through competition and cooperation among individuals in a population. Finally, a simulation experiment was performed to evaluate the distributed task allocation performance of the differential evolution quantum bee colony optimization algorithm. The simulation results demonstrate that the DEQABC algorithm converges faster than the QABC and ABC algorithms in terms of both iterations and running time. The DEQABC algorithm can effectively improve AUV distributed multi-tasking performance.
Keywords:
Differential evolution quantum artificial bee colony algorithm, Multi-AUV, Contract net, Task allocationDetails
- Issue
- Vol. 24 No. S3(95) (2017)
- Section
- Latest Articles
- Published
- 22-11-2017
- DOI:
- https://doi.org/10.1515/pomr-2017-0106
- Licencja:
-
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Open Access License
This journal provides immediate open access to its content under the Creative Commons BY 4.0 license. Authors who publish with this journal retain all copyrights and agree to the terms of the CC BY 4.0 license.