Journals - MOST Wiedzy

Logo

NUMERICAL SIMULATIONS OF LINEARLY STRATIFIED FLOW PAST SUBMERGED BODIES

Abstract

In this study, a methodology was presented to predict density stratified flows in the near-field of submerged bodies. The energy equation in temperature form was solved coupled with momentum and mass conservation equations. Linear stratification was achieved by the definition of the density as a function of temperature. At first, verifications were performed for the stratified flows passing a submerged horizontal circular cylinder, showing excellent agreement with available experimental data. The ability of the method to cope with variable density was demonstrated. Different turbulence models were used for different Re numbers and flow states. Based on the numerical methods proposed in this paper, the stratified flow was studied for the real scale benchmark DAPRA Suboff submarine. The approach used the VOF method for tracing the free surface. Turbulence was implemented with a k − ω based Detached Eddy Simulation (DES) approach. The effects of submarine speed, depth and density gradient on the free surface wave pattern were quantitatively analyzed. It was shown that, with the increasing of the speed of the submarine, the wavelength and wave height of the free surface wave were gradually increasing. The wave height of the free surface wave was gradually reduced as the submarine’s depth increased. Relative to the speed and submarine depth, the changes of the gradient density gradient have negligible effects on the free surface wave field.

Keywords:

Stratified flow, circular cylinder, internal wave, Suboff, equation of state

Details

Issue
Vol. 25 No. S3(99) (2018)
Section
Latest Articles
Published
11-01-2019
DOI:
https://doi.org/10.2478/pomr-2018-0114
Licencja:
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Open Access License

This journal provides immediate open access to its content under the Creative Commons BY 4.0 license. Authors who publish with this journal retain all copyrights and agree to the terms of the CC BY 4.0 license.

 

Authors

  • Weizhuang Ma

    College of Shipbuilding Engineering, Harbin Engineering University
  • Yunbo Li

    College of Ocean Science and Engineering, Shanghai Maritime University
  • Yong Ding

    College of Shipbuilding Engineering, Harbin Engineering University
  • Kaiye Hu

    College of Shipbuilding Engineering, Harbin Engineering University
  • Linxin Lan

    College of Shipbuilding Engineering, Harbin Engineering University

Download paper