Journals - MOST Wiedzy

Logo

DESIGN ANALYSIS OF HYBRID GAS TURBINE‒FUEL CELL POWER PLANT IN STATIONARY AND MARINE APPLICATIONS

Abstract

The paper concerns the design analysis of a hybrid gas turbine power plant with a fuel cell (stack). The aim of this work was to find the most favourable variant of the medium capacity (approximately 10 MW) hybrid system. In the article, computational analysis of two variants of such a system was carried out. The analysis made it possible to calculate the capacity, efficiency of both variants and other parameters like the flue gas temperature. The paper shows that such hybrid cycles can theoretically achieve extremely high efficiency over 60%. The most favourable one was selected for further detailed thermodynamic and flow calculations. As part of this calculation, a multi-stage axial compressor, axial turbine, fuel cell (stack) and regenerative heat exchanger were designed. Then an analysis of the profitability of the installation was carried out, which showed that the current state of development of this technology and its cost make the project unprofitable. For several years, however, tendencies of decreasing prices of fuel cells have been observed, which allows the conclusion that hybrid systems will start to be created. This may apply to both stationary and marine applications. Hybrid solutions related to electrical power transmission, including fuel cells, are real and very promising for smaller car ferries and shorter ferry routes.

Keywords:

gas turbine cycles, hybrid cycles, design of gas turbines, fuel cells

Details

Issue
Vol. 27 No. 2(106) (2020)
Section
Latest Articles
Published
17-07-2020
DOI:
https://doi.org/10.2478/pomr-2020-0032
Licencja:
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Open Access License

This journal provides immediate open access to its content under the Creative Commons BY 4.0 license. Authors who publish with this journal retain all copyrights and agree to the terms of the CC BY 4.0 license.

 

Authors

  • Tomasz Kwaśniewski

    Gdańsk University of Technology
  • Marian Piwowarski

    Gdańsk University of Technology

Download paper