PREDICTION OF VORTEX-INDUCED VIBRATION RESPONSE OF DEEP SEA TOP-TENSIONED RISER IN SHEARED FLOW CONSIDERING PARAMETRIC EXCITATIONS
Abstract
It is widely accepted that vortex-induced vibration (VIV) is a major concern in the design of deep sea top-tensioned risers, especially when the riser is subjected to axial parametric excitations. An improved time domain prediction model was proposed in this paper. The prediction model was based on classical van der Pol wake oscillator models, and the impacts of the riser in-line vibration and vessel heave motion were considered. The finite element, Newmark-β and Newton‒Raphson methods were adopted to solve the coupled nonlinear partial differential equations. The entire numerical solution process was realised by a self-developed program based on MATLAB. Comparisons between the numerical calculation and the published experimental test were conducted in this paper. The in-line and cross-flow VIV responses of a real size top-tensioned riser in linear sheared flow were analysed. The effects of the vessel heave amplitude and frequency on the riser VIV were also studied. The results show that the vibration displacements of the riser are larger than the case without vessel heave motion. The vibration modes and frequencies of the riser are also changed due to the vessel heave motion.
Keywords:
top-tensioned riser, vortex-induced vibration, wake oscillator model, time-varying axial tension force, sheared flowDetails
- Issue
- Vol. 27 No. 2(106) (2020)
- Section
- Latest Articles
- Published
- 17-07-2020
- DOI:
- https://doi.org/10.2478/pomr-2020-0026
- Licencja:
-
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Open Access License
This journal provides immediate open access to its content under the Creative Commons BY 4.0 license. Authors who publish with this journal retain all copyrights and agree to the terms of the CC BY 4.0 license.