Journals - MOST Wiedzy

Logo

SIMULATIONS AND TESTS OF COMPOSITE MARINE STRUCTURES UNDER LOW-VELOCITY IMPACT

Abstract

Due to their excellent performance, composite materials are increasingly used in the marine field. It is of great importance to study the low-velocity impact performance of composite laminates to ensure the operational safety of composite ship structures. Herein, low-velocity drop-weight impact tests were carried out on 12 types of GRP laminates with different layup forms. The impact-induced mechanical response characteristics of the GRP laminates were obtained. Based on the damage model and stiffness degradation criterion of the composite laminates, a low-velocity impact simulation model was proposed by writing a VUMAT subroutine and using the 3D Hashin failure criterion and the cohesive zone model. The fibre failure, matrix failure and interlaminar failure of the composite structures could be determined by this model. The predicted mechanical behaviours of the composite laminates with different layup forms were verified through comparisons with the impact test results, which revealed that the simulation model can well characterise the low-velocity impact process of the composite laminates. According to the damage morphologies of the impact and back sides, the influence of the different layup forms on the low-velocity impact damage of the GRP laminates was summarised. The layup form had great effects on the damage of the composite laminates. Especially, the outer 2‒3 layers play a major role in the damage of the impact and the back side. For the same impact energy, the damage areas are larger for the back side than for the impact side, and there is a corresponding layup form to minimise the damage area. Through analyses of the time response relationships of impact force, impactor displacement, rebound velocity and absorbed energy, a better layup form of GRP laminates was obtained. Among the 12 plates, the maximum impact force, absorbed energy and damage area of the plate P4 are the smallest, and it has better impact resistance than the others, and can be more in line with the requirements of composite ships. It is beneficial to study the low-velocity impact performance of composite ship structures.

Keywords:

Low-velocity impact, marine structure, composites, test, finite element analysis

Details

Issue
Vol. 28 No. 1(109) (2021)
Section
Latest Articles
Published
30-04-2021
DOI:
https://doi.org/10.2478/pomr-2021-0006
Licencja:
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Open Access License

This journal provides immediate open access to its content under the Creative Commons BY 4.0 license. Authors who publish with this journal retain all copyrights and agree to the terms of the CC BY 4.0 license.

 

Authors

  • Xiaowen Li

    Jimei University, School of Marine Engineering; Fujian Provincial Key Laboratory for Naval Architecture
  • Zhaoyi Zhu

    Jimei University, School of Marine Engineering; Fujian Provincial Key Laboratory for Naval Architecture
  • Qinglin Chen

    Jimei University, School of Marine Engineering; Fujian Provincial Key Laboratory for Naval Architecture
  • Yingqiang Cai

    Jimei University, School of Marine Engineering; Fujian Provincial Key Laboratory for Naval Architecture
  • Yunfeng Xiong

    Jimei University, School of Marine Engineering; Fujian Provincial Key Laboratory for Naval Architecture

Download paper