Journals - MOST Wiedzy

Logo

COMPARATIVE STUDIES OF THE SEATINGS OF PROPULSION PLANTSAND AUXILIARY MACHINERY ON CHOCKS MADE OF METAL AND CAST FROM RESIN

PART II. MOUNTING ON CAST RESIN CHOCKS

Abstract

This article is Part II of the paper containing a description and results of the experimental studies of the deformations, friction processes and structural damping that occur in the foundation bolted joints of propulsion plant components and auxiliary machinery installed on sea-going ships. Part I of this research work presents an analysis of the rigid mountings of machines and devices to the foundations on steel or resin chocks, and explains the need to carry out relevant research in this area. It also presents the description and results of experimental studies carried out for a foundation bolted joint with a conventionally used steel chock. Part II (this article) contains a description and results of similar studies carried out for a foundation bolted joint with a modern chock – cast from epoxy resin compound (EPY), specially developed for this purpose. Then, a comparative analysis of the results obtained for both bolted joints in question was made and the foundation chocks of the poured-in-place resin compound were demonstrated to better fulfill their technical tasks than the steel chocks traditionally used for this purpose.

Keywords:

sea-going ships, propulsion plants, auxiliary machinery, seating, bolted joints, chocks

Details

Issue
Vol. 27 No. 1(105) (2020)
Section
Latest Articles
Published
07-09-2021
DOI:
https://doi.org/10.2478/pomr-2020-0013
Licencja:
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Open Access License

This journal provides immediate open access to its content under the Creative Commons BY 4.0 license. Authors who publish with this journal retain all copyrights and agree to the terms of the CC BY 4.0 license.

 

Authors

  • Paweł Grudziński

    West Pomeranian University of Technology in Szczecin
  • Konrad Konowalski

    West Pomeranian University of Technology in Szczecin

Download paper