RESEARCH ON SHIP HULL OPTIMISATION OF HIGH-SPEED SHIP BASED ON VISCOUS FLOW/POTENTIAL FLOW THEORY
Abstract
In order to quickly obtain practical ship forms with good resistance performance, based on the linear wave-making resistance theory, the optimal design method of ship forms with minimum total resistance is discussed by using the non-linear programming (NLP) method. Taking the total resistance as the objective function (the Michell integral is used to calculate the wave-making resistance and the equivalent plate friction resistance formula is used to calculate the frictional resistance), the hull surface offset as the design variable and appropriate displacement as the basic constraints, and considering the additional constraints, the hull bow shape and the whole ship are optimised, and an improved hull form is obtained. The resistance of the ship before and after optimisation is calculated by the CFD method to further evaluate the resistance reduction effect and performance after optimisation. Finally, an example of optimisation calculation of an actual high-speed ship is given. The obvious resistance reduction results confirm the reliability of the optimisation design method.
Keywords:
potential flow theory, CFD, high speed ship, ship form optimisationDetails
- Issue
- Vol. 27 No. 1(105) (2020)
- Section
- Latest Articles
- Published
- 07-09-2021
- DOI:
- https://doi.org/10.2478/pomr-2020-0002
- Licencja:
-
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Open Access License
This journal provides immediate open access to its content under the Creative Commons BY 4.0 license. Authors who publish with this journal retain all copyrights and agree to the terms of the CC BY 4.0 license.