Journals - MOST Wiedzy

Logo

INVESTIGATIONS OF MECHANICAL PROPERTIES OF API P110 STEEL CASING TUBES OPERATED IN DEEP-SEA SOUR CONDENSATE WELL CONDITIONS

Abstract

Due to the complexity of the marine environment, in deep-sea drilling, all kinds of strings are corroded by different deepsea conditions for a long time, accompanied by high temperature and high pressure, which lead to the continuous change of mechanical properties of materials. In order to solve the problem that the material mechanical parameters cannot be accurately described in the performance analysis of the casing, deep-sea simulated corrosion and material damage experiments of P110 material were carried out in this paper. Mass loss and tensile experiments on corrosion-damaged test pieces were conducted under different corrosion experimental periods. The changes in mechanical properties of the material were analyzed. Equations of the variation of the equivalent yield strength and the equivalent tensile strength were obtained. The results show that the equivalent yield strength and the equivalent tensile strength decrease with the increase of the weight loss rate. Based on the experimental results and finite element analysis, a method for establishing the material corrosion model was proposed in this paper. The deep-sea drilling corrosion performance model of P110 material was established, which greatly reduced the error caused by the material uniformity assumption in finite element analysis. This paper provides a theoretical basis for the analysis of reliability and life of P110 materials in wells.

Keywords:

deep-sea drilling environment, mechanical properties, yield strength, tensile strength, corrosion modeling

Details

Issue
Vol. 27 No. 3(107) (2020)
Section
Latest Articles
Published
06-09-2021
DOI:
https://doi.org/10.2478/pomr-2020-0053
Licencja:
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Open Access License

This journal provides immediate open access to its content under the Creative Commons BY 4.0 license. Authors who publish with this journal retain all copyrights and agree to the terms of the CC BY 4.0 license.

 

Authors

  • Yao Zilin

    College of Chemistry and Chemical Engineering, Southwest Petroleum University
  • Wang Yu

    Robotics Research Center School of Mechanical Engineering, Xihua University
  • Yang Xuefeng

    Heavy oil development company of PetroChina Xinjiang Oilfield Company
  • Gao Anping

    Wuxi China Resources Gas Co., Ltd
  • Zhang Rong

    Petroleum Engineering School Southwest Petroleum University
  • Jia Yanjie

    Petrochina Southwest Pipeline Company

Download paper