Journals - MOST Wiedzy

Logo

Three-dimensional cfd analysis to study the thrust and efficiency of a biologicallyinspired marine propulsor

Abstract

Aquatic animals, which are the result of many millions of years of evolutionary optimization, are very quick, efficient, robust, and versatile. Accordingly, biologically-inspired mechanisms which emulate the movement of animals have recently become very popular. For the efficient design of a propulsion system it is very important to analyze the fluid flow in detail. CFD (Computational Fluid Dynamics) has become a powerful technique to understand the phenomena because it gives extensive information about the fluid flow characteristics. In the present work, a propulsion system consisting of an undulating fin which emulates the fish swimming was built. In order to optimize the mechanism, several undulating configurations were studied using a 3D turbulent CFD model. The thrust, drag, efficiency and hydrodynamic characteristics were analyzed. Furthermore, it was shown that the efficiency and thrust depend strongly on the oscillation frequency, amplitude and wavelength. In order to validate this CFD model, the numerically obtained thrust was successfully compared with experimental results from the laboratory mechanism.

Keywords:

fish swimming, marine propulsion, undulating fin, biomimetic, computational fluid dynamics, CFD

Details

Issue
Vol. 18 No. 1(68) (2011)
Section
Latest Articles
Published
21-04-2011
DOI:
https://doi.org/10.2478/v10012-011-0002-2
Licencja:
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Open Access License

This journal provides immediate open access to its content under the Creative Commons BY 4.0 license. Authors who publish with this journal retain all copyrights and agree to the terms of the CC BY 4.0 license.

 

Authors

  • M. I. Lamas

    Escola Universitaria Politécnica, Universidade da Coruña
  • J. D. Rodríguez

    Escola Universitaria Politécnica, Universidade da Coruña
  • C. G. Rodríguez

    Escola Universitaria Politécnica, Universidade da Coruña
  • P. B. González

    Escola Universitaria Politécnica, Universidade da Coruña

Download paper