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INTRODUCTION

The feedback linearization (FL) method [9, 10, 11, 13] 
consists in such transformation of a given nonlinear system 
which results in a new, linear time-invariant one. Here, by the 
transformation we mean the application of a proper control law 
combined with possible change of the system coordinates. Once 
a linear system is obtained, a secondary control law (or sub-
control) should be designed to ensure that the overall closed-
loop system performs according to the specifications.

In the simplest case of the system the FL method is reduced 
to the ordinary cancellation of nonlinearity by means of 
a properly selected control function. 

One of the main drawbacks of FL method relates 
to inaccuracies arising during cancellation of system 
nonlinearities. The thereby obtained transformed system is in 
fact not perfectly linear and, moreover, these imperfections may 
often prevent the use of efficient techniques of linear systems 
synthesis. An effective way to solve this problem consists in 
combination of feedback linearization method with the robust 
control techniques. In this paper H∞ optimal control theory 
within the state space framework is applied, i.e. the problem is 
considered from position of differential games theory [4, 5, 8, 
16]. In this view the model uncertainties are considered as an 
action of adversary player (or opposing nature) while our part 
is to invent a control strategy that is the best in terms of some 
given quality criterion (cost functional). In other words we are 
trying to minimize the cost assuming the ‘worst-case action’ of 
our opponent player (disturbances). Such an approach allows 
devising a controller which taking into consideration system 

parametric uncertainties, guarantees at the same time a good 
process performance.

In the paper, besides presenting a relevant portion of the 
above stated theory, its usefulness to ship course-keeping (or 
changing) problem is considered.

It is known that the PID (proportional-integral-derivative) 
controllers traditionally used in the field still have many 
shortcomings.

A disadvantage of a PID controller is that it can provide 
optimal performance only at the operating point for which 
it is designed. The ship parameters vary significantly with 
operating conditions such as e.g. forward speed of the vessel. 
Under the varying operating conditions, is tedious and difficult 
to determine properly the fixed parameters of the controller that 
results in good performance. Furthermore, the PID autopilots 
can cause difficulties when the ship makes large maneuvers 
involving non-linear dynamic behaviour. To avoid the problems 
of fixed structure PID autopilots, adaptive autopilots were 
introduced in the 1970s and have remained a major area of 
research until now [2, 17]. 

An alternative and promising research direction is the 
autopilot design from position of robust control theory for 
nonlinear systems. Therefore the main motivation of this paper 
is a proposal of the robust ship autopilot design which, based on 
recent H∞ theory, is able to finely cope with above mentioned 
inconveniences. 

The paper is divided into five sections and ended with 
conclusions. The second section presents the system class 
definitions, basic concepts as well as the transformation of 
considered system into standard differential game form. In 
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the third section a course-keeping problem and the Norrbin’s 
ship model structure are given. In the fourth section the two 
cases of robust ship autopilot design are presented (with and 
without load disturbances taken into account). The last, fifth 
section includes a short description of simulation tests and 
their results.

BASIC CONCEPTS AND DEFINITIONS

Let us consider a nonlinear system in Brunovsky form 
[11]:

1 = x2

2 = x3
(1a)···

n = f(x, θf) + g(x, θg)u

y = x1                                                             (1b)

where:
x ∈ Rn – the state vector,
θf ∈ Rk, θg ∈ Rl – vectors of system parameters,
u ∈ R – the control input, 
y ∈ R – the system output.

In the case of exact system model, i.e. under assumption 
that the nonlinear functions f and g of the model (1a) are known 
(and g(x, θg) ≠ 0, ∀x ∈ Rn) the insertion of the simple output 
feedback linearizing controller [9, 10, 13, 18]:

(2)

in the system (1a) results in exact cancellation of both 
nonlinearities (f and g), which yields:

y(n) = v                                    (3)

To find the control v(t) stabilizing this linear system 
a standard pole location technique can be used. If v is chosen 
as:

v = –μry(r-1) – ··· –μ1y                       (4)

and the coefficients μi are such that Γ(s) = sr + μrs(r-1) +... μ1 is 
a Hurwitz polynomial in the Laplace variable s, then the output 
y(t) and its derivatives converge to zero asymptotically, because 
the closed-loop dynamics is reduced to the equation:

y(r) + μry(r-1) +... μ1y = 0                    (5)

which, by virtue of the choice of coefficients μi is asymptotically 
stable. Let’s notice that also the internal stability i.e. the state 
x → 0 as t → ∞ is obtained.

As the true system parameters θf, θg are unknown and only 
some their estimates f, g are at our disposal the nonlinear 
functions of the system (1a) are (x, f) + (x, g)u and the 
control law (2) takes now the form:

(6)

Since the insertion of the control (6) into the system (1a) 
no longer guarantees exact cancellation and thereby a resulting 
system linearity (like in the former case (2)) we will try to solve 
this problem from position of differential games. To transform 
our system into a suitable form we perform the following 
calculations.

Adding to and subtracting from the last equation of the 
system (1a) the sub-control v we get:

(7)

where the formula v =  + u obtained from (6) was also used 
here.

Now denoting w = f –  + (g – )u and treating w as system 
disturbances we may rewrite the equations (1a) into the general 
matrix form [3].

 = Ax + Bvv + Bww                   (8a)

y = Cyx + Dyvu                        (8b)

where:                                                                                  (9)

Let’s observe that for optimization purposes a new output, 
(8b), is defined.

The matrices Cy and Dyv should be so selected as to achieve 
the proper weighting in the following cost functional:

(10)

where γ > 0 is a properly chosen constant (see below) called 
the performance bound.

The last two conditions of (9) are assumed to avoid cross 
terms in the functional (10) so that to get an equivalence to the 
corresponding Lqr criterion, i.e.:

(11)

(compare (33), (34)).
We have defined a differential game of two players where 

each of them is trying to influence the system by proper (profitable 
for him) choice of his strategy – v and w, respectively.

We (as the first player) are trying to minimize (10) with 
respect to v while the disturbances (the second player) is 
assumed to maximize the cost (10).

Assuming the commutativity of min-max operators as 
well as that the optimal strategies v*, w* of both parties exist 
we have:

(12)

Let’s observe that minimization of the maximized, by 
the second player, cost (10) refers to the situation where we 
are doing our best (optimally stabilizing the system output) 
assuming the worst-case realization of system disturbances.

One can prove [3] that if for a given γ > 0 w* maximizing 
the cost (10) exists, this fact can be interpreted in terms of the 
condition:

(13)

where:
K – applied controller which denotes boundedness of the 
infinity norm of the closed-loop transfer function Gyw from the 
disturbances w(t) to the output y(t). This guarantees also the 
system L2-gain stability (from w to y) [1].
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Minimization of (10) with respect to v, under assumption 
that the minimal bound γ of  is obtained, allows in turn to find 
the optimal controller K*. 

The explanations can be summarized into the following 
condition:

(14)

where:
γ* – the smallest γ in the condition  
K – a set of available controllers. 

The formulas for suboptimal strategies are [3, 1]:

(15)

where matrix P(t) is a solution of the H∞-like algebraic Riccati 
equation (RE),

(16)

such that:

(17)

is stable, i.e. all of the eigenvalues of this matrix have negative 
real parts. 

In practice, to solve the above formulated problem, we have 
to use some iterative procedure which consists in repeating the 
required calculations for different values of γ in order to choose 
the smallest one. For the properly selected γ (i.e. for γ = γ*) the 
strategies (15) are optimal. 

COURSE-KEEPING PROBLEM AND THE 
NORRBIN’S SHIP MODEL STRUCTURE 

The problem of course-keeping is a task of designing 
an automatic control aid (autopilot) which is able, by using 
appropriate rudder actions, to control the ship motion as to 
maintain a pre-assigned constant heading. This problem is 
often considered as consisting of two sub-problems. The first 
one concerns the ship controlling along the straight line at small 
course deviations. The second problem concerns the proper ship 
control during large manoeuvres, i.e. the problem of quality of 
transition process as a reply for a course step-change.

In order to synthesize a course-keeping controller we apply 
the following Norrbin’s [7, 12] ship model general structure:

(18)

where:
ψ – actual ship course angle (heading)
δ – rudder deflection angle as a control variable 
T, k – unknown model parameters 
F(·) – unknown function with assumed structure

In the ‘classical’ approach to ship control the structure 
of the nonlinear function F is (according to Norrbin model) 
often assumed in the form of a polynomial of the third order. 
Generally it may be assumed as follows:

(19)

For the ship with hull symmetry we have a2 = 0. The bias 
term a0 is frequently taken as null, being conveniently treated 
as an additional rudder-offset which can be made null by 
the adequate selection of the integral action in the autopilot 
design.

The most commonly used structure has therefore the 
form:

(20)

Now, assuming that the structure of the function F has been 
predetermined the coefficients ai are usually identified during 
sea trials [12]. After some ship-circulation tests we apply 
regression analysis to the obtained data (  in function of δ), 
for each of the mentioned structures separately, and then we 
search for the best fitting solution.

Since each of the tests should be performed for prescribed 
sailing conditions, e.g. different ship load, trim and velocity 
it follows that the problem of sufficiently general model 
building is a laborious and expensive task. For this reason in 
practice linear models are preferred [14] as being simpler for 
identification as well as we have, in this case, a number of 
linear synthesis methods at our disposal. For several control 
tasks however, especially for strongly nonlinear objects, 
the linear models are insufficient. The control algorithm 
obtained from such model leads not only to the deterioration 
of control performance but may also produce an unpredictable 
destabilization of system. Due to the above mentioned facts 
we propose an approach which, while dealing with nonlinear 
models, avoids, at the same time, to cope with the demanding 
identification task.

ROBUST SHIP AUTOPILOT DESIGN

In this section, based on the above given theoretical facts 
as well as on the presented Norrbin’s model structure, we 
formulate and then solve the problem of robust ship course-
keeping control synthesis. It is assumed, for simplicity (but 
without loss of generality), that the desired (reference) course 
value equals to zero: ψd = 0.

The case without additional load disturbances

To apply the above mentioned theory let us first define the 
course–keeping problem as a differential game. To this end we 
rewrite the Norrbin’s model (18) in the state space form:

(21)

where:
Ф = – F(·)/T,
c = k/T
r – course turning rate (angular velocity). 

According to (20) the function Ф is:

(22)

where:
bi = ai/T, i = 1,3

To make use of simple feedback linearization method we 
apply (compare (6)) the controller:

(23)

Now, following the procedure given in section 2, we can 
write Eq. (21) in the form:

(24)
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or simply as follows:

(25)

where w denotes errors caused by the model parameter 
uncertainty (considered here as a control strategy of the 
opposing nature). 

The system output may be assumed as follows:

(26)

where the constant λ is a criterion weight. 
The matrices which define the system in question are as 

follows:

(27)

Let’s note that by the proper choice of the output matrices 
Cy, Dyv a desired cost criterion (compare (11)) is obtained.

To find the proper numerical solution P(t) of Riccati-like 
equation (16) we can use Matlab function care [6] for different 
values of the constant γ > 0. As we want to select γ to be 
minimal (provided the solution RE exists) we have to apply 
this procedure repeatedly. This way we get the proper control 
strategy (see (15)) which will be used later in the process 
simulation.

The case with added load disturbances
During the routine work of the autopilot (i.e. under specified 

steady-state conditions, e.g. straight route mode) besides 
modelling errors we have also to take into account the load 
disturbances. The disturbances lead to the steady heading 
error which can be typically compensated by integral action 
introduced to the control system. 

To cope with the steady-state error we will consider in this 
section the problem of robust regulator design equipped with 
integral action.

Let us first define an extra error in the form of integral of 
the course error:

(28)

Based on the model (25) we define the augmented system by 
adding the error equation (28) (written in differential form):

(29)

where d are constant or slowly varying load disturbances.
The complementary output equation is:

(30)

Thus the matrices that define our system are as follows:

(31)

Let’s notice that during controller synthesis process the 
disturbances d are not directly taken into account. However, 
thanks to above presented system structure, any appearance 
of disturbances during system operation leads to controller 
counteraction which prevents steady-state error.

 
COURSE-CHANGING PROCESS 

SIMULATIONS

The standard method of assessing the control system quality 
is based on analysis of the transition process as a response to 
the step input. Thus in the following simulations we will test the 
ship behaviour after step change of the course set-point under 
different controller structures as well as various criteria data. 

Ship simulation model
According to [15] we assume, as the actual parameters of 

the ship model (21), the dynamic manoeuvring parameters of 
the m/s Compass Island. The units of time, length and angle 
are one minute, one nautical mile and one radian, respectively. 
The parameters were determined as follows:

b3 = – 0.62 min, b1 = – 1.064 min-1, 
(32)

b2 = b0 ≅ 0, c = 3.553 rad/min 

The parameters are, of course, not known to the control 
system designer thereby during the process simulations we 
will take another set of their values – possibly, substantially 
different. 

It is assumed also that the ship’s velocity during the steady-
state control process phase is constant u = 0.25 nm/min and 
that all the time we have constant propelling force.

The ship has the following characteristics: the maximum 
rudder angle is 35 deg., gross register tonnage of 9214 RT, 
deadweight of 13498 t, length of 172 m., draught of 9.14 m, 
one propeller, and maximum speed of 20 kn. Let’s note that the 
assumed parameters make the ship directionally stable [12, 14] 
but we can get similar results for the ship which is directionally 
unstable (e.g. for the opposite sign of the coefficient b1, i.e. 
b1 = – 1.064 min-1).

Simulation results
In order to examine the performance of the robust controller 

in question a corresponding Lqr regulator [3] has also been 
tested for comparison. The matching criteria matrices for the 
two cases were chosen the same. 

As an approximate counterpart values to the actual ship 
parameters (32) (unknown for designer) we assume:

3 = – 1 min, 1 = – 2 min-1, 

2 = 0 ≅ 0,  = 2 rad/min

The parameters are essential for the controller design as they 
contain some uncertain data of the ship’s dynamics. 

The remaining numerical data are as follows:

γ* = 1.05, λ = 2
and

,    R = 1                        (33)

where the criteria matrices Q and R refer to the corresponding 
Lqr problem. Let’s notice that the matrices are exactly the same 
as those which occur in the matching robust case (compare 
(26)).
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The following figures show the situation where the ship 
is moving for 3 min with steady speed (0.25 nm/min) along 
a straight line and then we apply a 30-degree step heading 
change command (in the case given in Fig. 3 and 4a disturbing 
torque is additionally applied).

The graphs presented in Fig. 1 and 2 show respectively 
the plots of headings and rudder deflections versus time for: 
a) robust controller, b) Lqr regulator.

In Fig. 3 and 4 are presented corresponding plots but for 
the case where the controllers are provided with integral 
action.

Let’s notice that despite the fact that the order of parameter 
errors is here about 100% the robust controller performance 
(Fig. 1a) is very good. On the other hand the corresponding Lqr 
controller operates close to the stability margin (see Fig. 1b). 

Moreover, according to the author experience, the plant-
model parameter errors for the robust controller can be made 
substantially higher without noticeable process performance 
degradation. 

Fig. 3 and 4 show corresponding graphs, however, with 
the difference that the controllers: robust and Lqr one are now 
equipped with integral action. The intensity of the constant 
load disturbances d acting on the ship, in the form of torque, 
corresponds to the compensating deflection of the rudder by 
11 deg (see Fig. 4).

The numerical data for this case are as follows:

γ* = 1.2, λ = 7

and

, R = 1                          (34)

where the criteria matrices Q and R refer, as before, to the 
corresponding Lqr problem.

As it can be seen, also in this case the robust controller 
performance is still better than its Lqr counterpart. 

Let’s observe that the plant-model mismatch disturbances 
w are diminishing with the progress of a transient phase of the 
process regulation (compare (24)). Thus the proper effect of 
integral action is manifesting itself during the system steady-
state, i.e. just after the process transient phase. 

By manipulating the criteria weighting λ we can adjust the 
required trade-off between precision of the output variable 
control (ψ) in relation to the control effort (v) and/or the integral 
of course error (e).

Taking e.g. λ = 7 we highly penalize the course error in 
relation to the control effort v as well as to the integral error e. 
To increase the number of degrees of freedom in this respect 
we could introduce some additional weighting related to the 

Fig. 1. Ship headings versus time for: a) robust controller, 
b) Lqr regulator (30° turning)

Fig. 2. Rudder deflections for: a) robust controller, 
b) Lqr regulator (30° turning)
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state variable e. High penalization of this variable results in 
a rapid decrease of the course steady-state error, however, at 
the cost of increasing the course overshot. 

CONCLUSIONS

The paper describes a proposition of a novel technique for 
robust control system design, which can be used to the ship 
motion control.

The technique seems to be very attractive for designing the 
ship autopilot albeit it requires additional research which should 
take into account different types of ship nonlinear models (e.g. 
including a steering gear) as well as consider various sailing 
conditions (in this phase of research the disturbances from 
waves has been deliberately omitted). It is worth noting that 
the modern adaptive PID controllers only partially solve the 
problem of ship model parameter changes. They can tune (as 
a rule) their gains only in response to the ship velocity changes 
while the number of factors responsible for the ship dynamic 
variations is much greater (e.g. ship load). The factors, when not 
taken into account by the controller, may lead to the degradation 
of steering process performance. Therefore, each new design 
proposal in this respect should attract attention.

The presented paper is focused on the properly formulated 
theory rather than on the practical engineering issues and is 
devised as a theoretical introduction to more practice-oriented 
engineering research.

BIBLIOGRAPHY

1. Abu-Khalaf M., Huang J., Lewis F. L.: Nonlinear Constrained 
Feedback Control. Advances in Industrial Control. Springer, 
London, 2006.

2. van Amerongen J.: Adaptive steering of ships. A model-reference 
approach to improved manoeuvring and economical course 
keeping. Ph.D. Thesis, Delft University of Technology, 1982.

3. Burl J. B.: Linear optimal control. Addison-Wesley, Menlo 
Park, CA, 1999.

4. Basar T., Bernhard P.: H∞ - optimal control and related minimax 
design problems. A dynamic game approach. Birkhäuser, Berlin 
1991. 

5. Basar T., Olsder G.J.: Dynamic noncooperative game 
theory. SIAM Series in Classics in Applied Mathematics, 
Philadelphia, 1999.

6. Control System Toolbox User’s Guide. For Use with MATLAB. 
The MathWorks, Inc. 1998.

7. Fossen T. I.: Guidance and control of ocean vehicles. John 
Wiley, Chichester, USA, 1994.

8. Isaacs R.: Differential games. John Wiley, New York 1965.
9. Isidori A.: Nonlinear Control Systems. An introduction, Springer 

-Verlag, Berlin, 1989.
10. Khalil H.K.: Nonlinear Systems. Prentice Hall, Upper Saddle 

River, NJ, 2002. 

Fig. 3. Ship headings versus time for controllers with integral action: 
a) robust controller, b) Lqr regulator (30° turning)

Fig. 4. Rudder deflections for controllers with integral action: 
a) robust controller, b) Lqr regulator (30° turning)



76 POLISH MARITIME RESEARCH, No 1/2013

11. Lewis F. W., Jagannathan S. and A. Yesildirak: Neural 
Network Control of Robot Manipulators and Non-Linear 
Systems. Taylor & Francis, 1998.

12. Lisowski J.: Ship as an object of automatic control. Wyd. 
Morskie, Gdańsk 1981 (in Polish).

13. Márquez H. J.: Nonlinear control systems. Analysis and design. 
John Wiley, NJ, 2003.

14. Morawski L., Pomirski J.: Design of the robust PID course-
keeping control system for ships. Polish Maritime Research, No. 
1, 2002.

15. de Wit C., Oppe J.: Optimal collision avoidance in unconfined 
waters. Journal of the Institute of Navigation, Vol. 3,126, No.4, 
1979/80.

16. Zwierzewicz Z.: On some geometric aspects of differential 
games (in Polish). Archives of Control Sciences, No. 3-4, 1985 

17. Zwierzewicz Z.: Ship course-keeping via nonlinear adaptive 
control synthesis. Int. Journal of Factory Automation, Robotics 
and Soft Computing, 2007, no. 2, April, 2007, pp.102-107.

18. Zwierzewicz Z.: Methods and algorithms of ship automatic 
control systems (in Polish). Scientific publishing of Szczecin 
Maritime University, Szczecin 2012 

CONTACT WITH THE AUTHOR

Zenon Zwierzewicz, Assoc. Prof.
Faculty of Marine Engineering

Maritime University of Szczecin
Wały Chrobrego 1-2   

70-500 Szczecin, POLAND
e-mail: ieiao@am.szczecin.pl


