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INTRODUCTION

Cost-effectiveness and constant need for safety enhancement 
in shipping call for raising the requirements concerning the 
accuracy of steering a ship for various control tasks. This is 
particularly true for fairways with heavy traffic and restricted 
area or depth waters, such as straits and channels, but also for 
the ship to be conducted along a safe trajectory in the open sea. 
These situations may be considered as steering along a preset 
trajectory. Although course stabilization generally seems to be 
a simple problem of automatic ship control, the fact the object 
is a complex one (model non-linearity, uncertainty resulting 
from external disturbances, changing ship’s dynamics) makes 
the task more difficult. One can consider it as an uncertain 
system, i.e. one in which the object dynamics description is 
unknown, or only partially known. The functional, or structural, 
uncertainty calls for current object model adaptation, that is why 
such systems, called functionally adaptive, represent a new area 
of intelligent control systems [4, 5, 15, 16].

The author presents an algorithm of ship course stabilization, 
operating on the basis of a feedback linearization controller [6]. 
The object model structure is assumed to be partly known. 
Current approximation of unknown object model functions 
is achieved by means of neuro-fuzzy approximators based on 
Gaussian radial basis functions (GRBF) [4].

FEEDBACK LINEARIZATION WITH 
OBJECT MODEL ADAPTATION

This chapter is divided into three parts. The first contains 
a synthesis of the feedback linearization controller, the second 
part presents a method of object model adaptation, and in the 
last part the stability of the adaptive system has been proved.

The controller

Let the dynamics of a continuous object be described by 
a non-linear equation of state:

 = f(x, u)                                (1)
where:
f(x, u) - continuous differentiable vector function, containing 

zero vectors in its domain,
x - n-dimensional state vector,
 - n-dimensional vector of state derivatives versus time 

(t),
u - p-dimensional vector of control signals.

Fig. 1. Architecture of a controller with linearization feedback 
(source: own study)

The fundamental idea of feedback linearization [6] is 
illustrated in Fig. 1. It consists in building a non-linear control 
law u (assuming the state vector is measurable) as the so called 
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internal control loop that linearizes a non-linear system after 
an appropriate transformation of state space coordinates (from 
x to y). Then a control v can be designed in the external loop 
in new coordinates, making use of the ‘rich store’ of linear 
system control methods.

Our considerations will be limited to the class of non-linear 
single input and affinity systems, due to the form of control 
signal:

 = f(x) + g(x)u                         (2)
where:
f(x), g(x) - smooth vector fields in Rn (infinitely differentiable 

functions, with a domain and range Rn) and f(0) = 0,
u - control signal (scalar).

The system described by equation (2) can be linearized by 
feedback, if there exists a nonlinear control law:

u = α(x) + β(x)v                        (3)
where:
α(x), β(x) - function with a range R and β(x) ≠ 0,
v - new control input (scalar),

and dipheomorphism (differentiable function, whose inverse 
function exists and is differentiable) transforming the state 
vector x into y:

y = T(x)                                (4)

so that for the control (3) the transformed variables satisfy the 
linear state equation:

 = Ay + bv                          (5)
where:
A - matrix with n × n dimensions, whose elements ai,i=1 for 

1 ≤ i ≤ n – 1 are equal to one, the others are zeros,
b - n-dimensional vector, whose n-th coordinate is a unity, 

the others are zeros.

Feedback linearization is called global, if dipheomorphism 
(4) is determined for any state vector x.

We will now derive a condition for the existence of 
dipheomorphism (4) and a method of its determination, and 
the determination of control (3). Differentiating both sides of 
equation (4) against time, we will obtain:

(6)

where:

 - Jacobian matrix of the transformation T(x),

which after the application of relation (5) assumes this form:

(7)

The above equation can be written as the system:

(8)

that after the introduction of a Lie derivative [7] takes this 
form:

(9)

and accounting for relation (2) and the fact that components: 
T2, ..., Tn must be independent of u, contrary to the control v, 
it will be written as:

(10)

At this point one can see that the feedback linearization 
problem actually requires looking for the component T1, as 
later the remaining components T2, ..., Tn can be determined 
inductively from the system (10), then the control input 
(because Lg(x)Tn(x) ≠ 0):

(11)

that for:

(12)

takes the form (3).
Therefore, how do we determine the component T1 Using 

the Lie bracket [7] we get:

Ladf(x)g(x)T1(x) = Lf(x)Lg(x)T1(x) +
(13)

– Lg(x)Lf(x)T1(x) = – Lg(x)T2(x) = 0
and performing the above operations inductively, we 
obtain a system of partial differential equations versus the 
component T1:

(14)

(whose solution yields T1) and the relation:

(15)

thanks to which, by indirect reasoning, we can easily notice 
that smooth vector fields g(x), g(x), ..., g(x) 
must be linearly independent. Therefore, by virtue of Frobenius 
theorem the system (14) has a solution if and only if the 
set of vector fields { g(x), g(x), ..., g(x)} is 
involutive, which ultimately gives conditions for the existence 
of dipheomorphism (4).
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The control (3) linearizes the system (2), after the 
transformation of coordinates (4) and brings it to the form (5), 
therefore, to obtain asymptotic stability, designing a linear input 
in the external loop:

v = – a1y1 – ... – anyn                     (16)

where:
a1, ..., an - positive settings of the controller,

we should select its coefficient in such a manner that the 
characteristic polynomial (of the created linear system):

Г(s) = sn + ans
n–1 + ... + a2s + a1           (17)

has all roots with negative real part, and for the purpose of the 
adaptation method we additionally require that at least one pole 
should have zero imaginary part.

The adaptation

So far the considerations have referred to a situation where 
the model (2) is in an overt form. In reality this is not the case, 
so in the formula for the control law in the internal loop (11) 
there are unknown functions:

αf(x) = Lf(x)Tn(x)
(18)

αg(x) = Lg(x)Tn(x)
To identify these functions we will use neuro-fuzzy 

approximators [4]:

(19)

where:
wf, wg - k-dimensional vectors of weight parameters,
αf0(x), αg0(x) - known initial function estimates (18),
Φf, Φg - k-dimensional basis functions,

built on Gaussian radial basis functions (GRBF), whose i-th 
element has the form (1 ≤ i ≤ k):

(20)

where:
ufi

, ugi
 - n-dimensional vectors representing centres (symmetry 

axes) of i-th elements of basis functions,
 - variances representing the ‘width’ of basis functions,

║x║ - Euclidean norm.

The values of weight parameters should change depending 
on the dynamics error, which due to the fact that the control:

(21)

generally does not satisfy the last relation of the system (10), 
should be defined as below (the other equation is created by 
replacing v with a term derived from the control (21)):

e = αf(x) + αg(x)u – v =
(22)

= αf(x) – f(x) + [αg(x) – g(x)]

and assuming the vector y is measurable, it can be calculated 
from the following relation, obtained from the last component 
of the equation (5) and by putting in (16)):

(23)

If we now apply a Laplace transformation and the notation 
(17), we get:

e(s) = Г(s)y1(s) = 
(24)

(s + d)Г1(s)y1(s) = (s + d)e1(s)
where:
d - number opposite to the real root of the polynomial 

(17),
Г1(s) - polynomial sn–1 + bn–1s

n–2 + ... + b2s + b1, created by 
dividing (17) by (s + d),

e1(s) - filtered dynamics error (e1(t) = y1
(n–1) + bn–1y1

(n–2) + ... +
+ b2y1

(1) + b1y1).

The error e1(t) will serve for the determination of the 
adaptation law of network weight parameters:

f = ηfe1Φf ; g = ηge1Φgu               (25)

where:
ηf, ηg - constant coefficients of adaptation.

Stability of the adaptive system

We will now prove the stability of the adaptive system under 
consideration. Let ,  be full-network vectors of weight 
parameters, for which these relations hold:

(26)

where Δf, Δg can be regarded as restricted disturbances, and 
due to their low value they are neglected in practice. Using the 
relations (22) and (24) and substituting: (19), (26) we get the 
equation (neglecting: Δf, Δg):

(27)

from which we can determine an error derivative e1 with 
respect to time:

(28)

where:

Let the relation below be a Lyapunov function.

(29)

The time derivative of this function, after substituting the 
relation (28) has this form:

(30)

and having accounted for the adaptation law of network weight 
parameters (25) we get for e1 ≠ 0:
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(e1) < 0                                (31)
One may conclude from the other Lyapunov’s method 

that the examined adaptive system is asymptotically stable. 
When we also consider the terms Δf, Δg to obtain asymptotic 
stability of the system the sliding mode control has to be used 
[12]. The method consists in adding a properly selected signal 
to the control, so that the signal guarantees that the inequality 
(31) holds. We manage to do so here making an additional 
assumption: αg(x) > 0 and knowing the constraints of the 
relation Δf + Δgu, also knowing such number gsl, for which 
this relation holds:

αg(x) > gsl > 0                          (32)

In such case, making similar considerations for the control 
signal in the form:

(33)

where:
o - upper constraint of ⎟Δf + Δgu⎟,

we will notice that the inequality (31) will hold, as had to be 
proven.

SYNTHESIS OF SHIP COURSE 
STABILIZATION SYSTEM

Let this equation be a model describing the dynamics of 
ship movement [8]:

(34)
 where:
ψ - course deviation,
r =  - rate of turn,
δ - rudder angle,
a, b, c - constant coefficients.

Then to harmonize the above with (2) the following 
notations will be made:

(35)

The control (3) is described by the formula:

(36)

while the dipheomorphism (4) has this form:

(37)

therefore, in this case the feedback linearization is global.
Although the state vector will not be transformed, we 

already get a linear description of the object:

(38)

which for:

(39)

will have the form (5).
Coefficients of linear control in the external loop:

v = – a1ψ – a2r                          (40)

should be selected so that the characteristic polynomial of the 
system (38) executing the control (40):

Г(s) = s2 + a2s + a1                       (41)

has two real negative roots.
Now, assuming that the functions

αf = ar + br3; αg = c                       (42)

are not overtly given, and only their initial estimates are 
available: αf0, αg0 we will apply neuro-fuzzy approximators (19) 
to identify the functions. For the approximators, an i-th (1 ≤ i ≤ k)
element of radial basis functions (20) will have the form:

(43)

while the adaptation law of weight parameters (25) will be 
based on the error:

(44)

An autopilot thus designed guarantees an asymptotic 
stability of the system on condition that we assume that:

Δf ≈ 0; Δg ≈ 0                             (45)

Otherwise, to achieve an asymptotic system stability, we 
have to add a signal to the control, as per the relation (33):

(46)

where:
gsl = 0.0005 [1/s2] - known lower constraint of the function αg.

COMPUTING EXPERIMENTS

The computing experiments were performed in the Matlab/
Simulink environment. Instead of a ship (real object), a de 
Witt-Oppe model [3] was used, accounting for the dynamics 
of the steering gear:

(47)

where:
(x1, x2) = (x, y) - Cartesian coordinates (ship’s position),
u - ship’s longitudinal speed,
v - rate of turn,
S - propeller thrust,
a, b, c, f, W, r1, r3 - coefficients determined from model tests 

(varying for different ship types and 
navigational conditions).

The ship’s model coefficients were those of m/s Compass 
Island [3]. To incorporate disturbances, the simulations 
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included a signal with characteristics of sea waves generated by 
wind [2]. The coefficients of linear control in the external loop 
(40) were determined by means of LQR controller synthesis. 
One-dimensional radial basis functions (43) were assumed, 
with zero centres and unit variances. The adaptation law of 
network weight parameters (25) provides for unit coefficients 
of adaptation.

Results of an example computing experiment are shown 
in Fig. 2. The plotted trajectory, rudder angle and changes of 
course deviations illustrate the ship’s successive manoeuvres: 
course alterations 90° to starboard, then 90° to port. The 
computing experiments confirmed the correct performance of 
the herein proposed algorithm for ship course stabilization with 
object model adaptation.

SUMMARY

The article presents an algorithm of ship course stabilization 
using object model adaptation based on neuro-fuzzy 
approximators. The presented method belongs to a new 
generation of adaptive control methods for uncertain systems.

The algorithm is intended for implementation in the 
executive module of the navigational decision support system 
NAVDEC [9, 14]. The executive and other modules (e.g. data 
fusion module [1, 13], manoeuvre planning module [11]) make 
up a practical implementation of navigational decision support 
system used in the process of safe ship conduct (invention [10]). 
The implementation of the presented algorithm will lead to 
higher degree of automation of navigation and enhancement of 

navigational safety. Consequently, benefits of this development 
are as follows:
− social benefits due to lower number of human loss of life 

or health by crews and passengers of sea-going vessels,
− material benefits due to lower losses of cargo, less ship 

damage and fewer sunken ships,
− environmental protection and prevention of environmental 

disasters that might result from collisions of ships carrying 
hazardous materials.
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