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INTRODUCTION 

Triangular meshing is achieved with algorithms which use 
either Delaunay Triangulation (DT) presented in [2] and [6] 
or Constrained Delaunay Triangulation (CDT) presented in 
[3]. Empty circumcircle condition of Delaunay Triangulation 
ensures best shaped triangles on a given set of vertices. Also 
mesh refinement algorithms as in [10], which improve mesh 
by inserting new vertices to break triangles having excessive 
angles hold empty circumcircle condition. Checking in two-
dimensional space if there is any other vertex within circle 
circumscribed on any mesh triangle, is not difficult. However 
it requires precise calculations due to round-off vulnerability of 
floating math – see [11]. Provided that points A, B, C are in the 
counter-clockwise order point D lies within ABC circumcircle 
when condition presented in formula (1.1) is satisfied. 

(1.1)

In our considerations we assume the surface to be described 
as NURBS (Non-Uniform Rational B-Spline) surface. 
A NURBS surface of degree p in u direction and degree q in 
v direction is a bivariate vector-valued function described by 
the formula (1.2) as in [5] and [9].

(1.2)

The {Pi,j} is a bidirectional net of control points and Ri,j(u, v) 
is a piecewise rational basis function as in formula (1.3).

(1.3)

The {ϖi,j} are the weights while {Ni,p(u)} and {Nj,q(v)} 
are non-rational B-spline basis functions defined on the knot 
vectors:

U = {0,..., 0, up+1,..., ur–p–1, 1,..., 1}

V = {0,..., 0, vq+1,..., us–q–1, 1,..., 1}
Formula (1.2) and (1.3) is a parametric form of the NURBS 

surface. Parameters u and v define parametric space for the 
surface which is a plane. Vector-valued function returns 
a vector of co-ordinates (x, y, z) – point on a surface, for given 
(u, v) pair of parameters. If a surface was developable it should 
be enough to triangulate it in parameter space (on a plane). 
Then the result triangles in 3D space should have the same 
properties as in the parameter space. However the surface may 
be curved in such a way that transformation from parametric 
space do 3D space causes distortion which changes length 
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and angles. This is the reason why it is not possible to mesh 
only in the parametric space. To properly mesh the surface the 
triangulation must be denser in the regions where the distortion 
is more significant. 

NURBS CURVATURE

To be able to identify regions where the triangular mesh is 
to be denser it is necessary to define some measure of distortion 
in mapping between parametric space and the surface. The 
simplest measure is curvature. The curvature is defined for 
parametric curve C as its second derivative with respect to the 
curve length - see formula (2.1) as in [5].

(2.1)

In Euclidean three-dimensional space there are two 
curvatures defined for a parametric surface S(u, v): Gaussian 
curvature and mean curvature. Both requires finding two 
principal directions on the surface - the surface curves with 
maximum and minimum curvatures. Hence to compute 
a surface curvature at (u, v) it is necessary to select two surface 
curves from all surface curves crossing this point: one with 
maximum curvature k1 and one with minimum curvature 
k2. The Gaussian curvature is the product of k1 and k2 – see 
formula (2.2) as in [1].

K = k1 · k2                               (2.2)

The mean curvature is the mean value of k1 and k2 – see 
formula (2.3) as in [1].

(2.3)

In case of general parametric surface S(u, v) finding the 
principal directions might be computationally expensive.

TANGENT PLANE AND DISTANCE

Triangular meshing of a surface is a method of surface 
approximation. The maximum distance between a point on 
the surface and its approximating mesh seems to be a good 
measure of mesh quality. It seems even better than finding the 
maximum curvature point – see Fig. 1. 

Fig. 1. Maximum distance and maximum curvature points 

In [8] Laug proposed two measures: distance deviation A0 
and angle deviation (difference in a normal vector angle) A1. 
However he did not give any suggestions how to compute the 
measures and how expensive the calculations are. He focused 
mainly on discussing when to apply each of the measures to 
obtain pertinent results.

Finding maximum distance for the entire mesh requires 
checking every mesh triangle. To assess the quality of a single 
mesh triangle it is necessary to find a plane tangent to the 
surface, which is parallel to the triangle. When a point of 
tangency lies between vertices of the triangle in the parametric 
space then the distance between the parallel plane and the 
triangle is the maximum distance between a point on the surface 
and the triangle – see Fig. 2.

Fig. 2. A mesh triangle and the parallel plane tangent to the surface 

OPTIMIZATION PROBLEM

Finding the parallel tangent plane requires solving a system 
of two equations presented in formula (4.1). Vector N is known 
as we know three vertices P1, P2, P3 of the mesh triangle, which 
also belong to the surface S. 

N ● S’u(u, v)
(4.1)

N ● S’v(u, v)
where:
N = P1P2 × P1P3
S’u(u, v) – the first derivative with respect to u 
S’v(u, v) – the first derivative with respect to v 

Geometric interpretation of the formula (4.1) is as follows: 
the plane tangent to the surface S is defined by two partial 
derivatives: S’u with respect to parameter u, and S’v with respect 
to parameter v. Each partial derivative is a vector tangent to 
the surface S in the same point but in different direction. If 
vector N is perpendicular to the plane tangent to the surface 
S, then its dot product with each partial derivative S’u and S’v 
must be zero.

Solution of the system of equations (4.1) is a pair of 
parameters (u, v). With these parameters we obtain a point 
P = S(u, v), which is a point of tangency. The distance between 
the point P and the triangle P1 P2 P3 shows how close is the 
mesh triangle to the surface. The closer the point the better the 
quality of the triangle and vice versa. 

There might be more than one solution for the system of two 
equations presented in formula (4.1). It is due to the fact that 
the surface is a free-form surface of any shape. Finding more 
than one solution is a natural indication for making triangular 
mesh denser. 

OPTIMIZATION ALGORITHM

To solve the system of equations presented in formula 
(4.1) we use Newton iteration. The method is similar to that 
used to solve the point inversion problem presented in [9] 
and [4]. First we change each equation into the function as 
in formula (5.1)

f(u, v) = N ● S’u(u, v) = 0
(5.1)

g(u, v) = N ● S’v(u, v) = 0
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Iterations require to change the values of parameters 
u and v.

ui+1 = ui – Δu
(5.2)

vi+1 = vi – Δv
where:

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

Iterations are finished when the convergence criterion 
(5.8) has been met or maximum number of iterations has been 
reached.

(5.8)

The found solution is the local extreme. As it should not take 
many iterations it is possible to start searching for the solution 
from each of the vertices of the mesh triangle. If the result is 
the same from each vertex it is possible that the solution found 
is the only solution.

The Newton iteration has been chosen to find solution 
because it involves relatively not expensive calculations: i.e. the 
first and second partial derivatives and matrix multiplication. It 
is also recognized capable of to bringing most reliable results 
in other fundamental calculations performed on NURBS e.g. 
point inversion. To find the maximum distance between a mesh 
triangle and the surface one could also use random search 
methods. It would simplify calculations, however it would 
require more iterations as the process of choosing subsequent 
solutions is of a stochastic nature. 

EXPERIMENT RESULTS

The NURBS surface of second degree (quadratic) has been 
taken to experiment. Tab. 1 lists control points of the surface. 

The shape of the NURBS surface is presented with green 
color in Fig. 3. The rectangular net of control points is shown 
above the surface.

Six triangles with vertices on the surface have been chosen 
to check the tangent plane search algorithm presented in the 
previous chapter. For each triangle a parallel plane tangent 
to the surface has been found and a distance between a plane 
and a triangle has been calculated. The results are presented 
in Tab. 2.

Each triangle vertex in Tab. 2 is described both in three-
dimensional space with the co-ordinates (x, y, z) and in 
parametric space of the NURBS surface with the pair of 
parameters (u, v).

Tab. 1. Control points {Pi,j} of the NURBS surface

Pi,j u direction

v direction

(0.0, 0.0, 0.0) (10.0, 0.0, 0.0) (20.0, 0.0, 0.0) (30.0, 0.0, 0.0)

(0.0, 10.0, 0.0) (10.0, 10.0, 10.0) (20.0, 10.0, 10.0) (30.0, 10.0, 0.0)

(0.0, 20.0, 2.0) (10.0, 20.0, 12.0) (20.0, 20.0, 12.0) (30.0, 20.0, 2.0)

(0.0, 30.0, 0.0) (10.0, 30.0, 10.0) (20.0, 30.0, 10.0) (30.0, 30.0, 0.0)

(0.0, 40.0, 0.0) (10.0, 40.0, 0.0) (20.0, 40.0, 0.0) 30.0, 40.0, 0.0)

The surface knot vector in u direction : U = {0.0, 0.0, 0.0, 0.5, 1.0, 1.0, 1.0}
The surface knot vector in v direction : V = {0.0, 0.0, 0.0, 0.4, 0.6, 1.0, 1.0, 1.0}

Tab. 2. Tangent plane search results for the six triangles on the NURBS surface 

No 1-st vertex 2-nd vertex 3-rd vertex Normal vector Tangency point

D
is

ta
nc

e

It
er

at
io

ns

1 (11.02, 14.23, 9.48)
(0.33, 0.33)

(11.02, 25.41, 9.61)
(0.33, 0.66)

(18.71, 20.00, 10.64)
(0.66, 0.50) (12.25, 0.98, -85.952) (14.20, 19.81, 

11.61) 1.593 2

2 (13.95, 18.33, 11.48)
(0.45, 0.45)

(13.95, 21.67, 11.48) 
0.45, 0.55)

(16.05, 20.00, 11.57)
(0.55, 0.50) (0.28, 0.00, -7.00) (14.79, 20.00, 

11.66) 0.146 2

3 (3.80, 13.13, 4.13)
(0.10, 0.30)

(3.80, 16.67, 4.93)
(0.10, 0.40)

(12.80, 14.95, 10.47)
(0.40, 0.35) (21.00, 7.26, -31.88) (8.87, 16.21, 8.81) 0.530 3

4 (7.20, 13.13, 6.75)
(0.20, 0.30)

(7.20, 16.67, 7.73)
(0.20, 0.40)

(12.80, 14.95, 10.47)
(0.40, 0.35) (11.39, 5.51, -19.83) (10.11, 15.51, 9.41) 0.271 4

5 (7.20, 9.17, 5.13)
(0.20, 0.20)

(12.80, 9.17, 7.53)
(0.40 0.20)

(10.20, 30.83, 6.63)
(0.30 0.80)

(-52.00, -1.20, 
121.33)

(11.90, 19.84, 
10.92) 3.372 2

6 (7.20, 9.17, 5.13)
(0.20 0.20)

(12.80, 9.17, 7.53)
(0.40 0.20)

(10.20, 16.67, 9.73)
(0.30 0.40)

(-18.00, -18.56, 
42.00) (11.58, 13.04, 9.26) 0.455 4
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SUMMARY

The presented optimization method does not guarantee to 
always find a plane parallel to the mesh triangle and tangent to 
the NURBS surface. Especially, when the NURBS surface has 
inflection points and is partially convex and partially concave 
there might be many solutions. With Newton iteration only 
the solution closest to the point from which the search started, 
is found.

However the distance between a parallel tangent plane and 
a mesh triangle is a good measure of accurate meshing. The 
experiment results presented in Tab. 2 e.g. in line 1 and 2 show 
that the smaller triangle in line 2 is about ten times closer to the 
surface than the bigger triangle in line 1. Both tests required 
only two iterations – a very quick convergence. Next pairs of 
lines in Tab. 2, e.g. 3 and 4 or 5 and 6, also shows significant 
reduction of the distance between the NURBS surface 
and mesh triangles with reduction of the size of a triangle.
Quick convergence of the search method results in the short 
execution time. The presented method seems to be promising 
and may be applied even if every triangle of the meshed surface 
was to be checked in this way. 

Advantages of the presented method:
- distance between a mesh triangle and a parallel plane 

tangent to the NURBS surface is a good measure of mesh 
quality,

- quick convergence – several iterations to find solution,
- short execution time due to quick convergence and not 

complicated operations (NURBS surface derivatives)

Fig. 3. A view of the NURBS surface shape below 
the rectangular net of control points

An alternative way to assess mesh quality would be 
calculation of volume contained between the NURBS surface 
and a mesh triangle plane. However volume calculation 
requires calculating integrals of the NURBS surface, which 
is more complicated and time consuming than calculating 
derivatives. The comparison of the two measures could be 
interesting although it is out of the scope of this paper.
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