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ABSTRACT

In this paper two new approaches are developed to calculate the astronomical vessel position (AVP). Basically, 
determining the AVP is originated from the spherical equal altitude circles (EACs) concept; therefore, based on the 
Sumner line’s idea, which implies the trial-and-error procedure in assumption, the AVP is determined by using the 
two proposed approaches. One consists in taking the great circle of spherical geometry to replace the EAC to fix the 
AVP and the other implements the straight line of the plane geometry to replace the EAC to yield the AVP. To ensure 
the real AVP, both approaches choose the iteration scheme running in the assumed latitude interval to determine the 
final AVP. Several benchmark examples are demonstrated to show that the proposed approaches are more accurate and 
universal as compared with those conventional approaches used in the maritime education or practical operations. 
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INTRODUCTION

Daily determination of the astronomical vessel position 
(AVP) has become a main task for the navigator in every 
voyage. Although the global positioning system (GPS) has 
been widely used to determine the vessel position owing to 
the electronic technology emerging in the modern society, 
military restriction might arise and lead to its limited 
commercial application. Therefore, a classical approach to 
determine the AVP is still necessary because of its reliability 
or necessity to check results taken from the GPS [3, 4, 25, 28].

To determine the AVP by using the sight reduction 
method, let’s go back to the “initial point” and consider the 
basic concept of obtaining the AVP, which is originated from 
the spherical equal altitude circles (EACs). Basically, two 
celestial bodies produce two EACs whose projections on the 
chart are called the circles of position (COPs). Some methods 
developed by using the COP concept to determine the AVP are 
nearly constructed from the spherical trigonometry. Complex 
mathematical formulations and tedious calculations arising 
in these methods make them hard to be used in practical 

navigation [1, 2, 5, 7, 10, 14-21, 23, 24, 26, 29-31]. However, when 
the radius (co-altitude) of the EAC is larger than 3 degrees, 
which means the curvature of the COP becomes smaller 
to be neglected, the line of position (LOP) can replace the 
COP. To date, currently used methods in maritime education 
or practical operations to determine the AVP included the 
high-altitude observation (HAO), which is based on the COP 
concept, and the intercept method (IM), which is based on the 
LOP concept. The HAO is suitable for the observed altitude 
greater than 87 degrees and belongs to a kind of graphic 
method; while the IM is suitable for the observed altitude 
smaller than 87 degrees and is used to determine the AVP 
by the graphic method with computations [3-5, 13]. Since the 
sight reduction methods need to judge the observed altitude 
for a proper choice, is it possible to develop an approach to 
determine the AVP without using the graphic method and 
more accurate and versatile as compared with those methods 
mentioned above? This is one of our motivations to develop 
new approaches for yielding the AVP.

The well-known IM or the altitude difference proposed 
by Marcq de St.-Hilaire (1832-1889) had produced several 
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types of calculation methods in celestial navigation to obtain 
the Hilaire line (otherwise called tangent LOP). Then, two 
tangent LOPs can yield the AVP. Currently used approaches 
with various short tables or inspection tables for determining 
the AVP are developed by many researchers [3-6, 11, 13, 20, 
21]. However, it should be noted that the original principle 
of the LOP is the Sumner line (otherwise called the secant 
LOP), which was rightly called“the commencement of  
a new era in practical navigation”[3, 4, 22]. Thus, it makes the 
follow-up approaches be available. The difference between the 
Sumner line and the Hilaire line consists in their different 
assumptions. The former is based on two assumed parallels 
of latitudes to yield two points, which form a Sumner line; 
while the latter takes an assumed position (AP) to calculate 
the computed altitude. Then by using the altitude difference 
between the computed altitude and the observed one, the 
Hilaire line which moves perpendicularly along the assumed 
line of azimuth can be obtained. Nevertheless, both schemes 
of the Sumner LOP and the Hilaire LOP have the same trial-
and-error procedure in their assumptions.

Fig. 1. Illustration of solving the AVP based on the Sumner line’s idea

An iteration scheme is then necessary to ensure the real 
AVP. Since the Sumner line has complicated calculation 
and limited usage [22], only Valier’s method can avoid 
these shortcomings [31], however its drawbacks still lead to 
uncertainty of the real AVP. 

To overcome drawbacks of the methods developed by using 
the Sumner line’s idea, the iteration scheme in conjunction 
with the limit concept is assumed to develop our approaches 
for accuracy and versatility. As known, determining the AVP 
comes from the EACs concept. In this regard, based on the 
Sumner line’s idea, the AVP can be obtained either by taking 

the great circle of spherical geometry to replace the EAC or 
by adopting the straight line of the plane geometry to replace 
the EAC to determine the AVP. The two our approaches are 
thus developed to yield the real AVP with avoiding application 
of graphic construction and tedious calculation. In addition, 
the iteration scheme and the limit concept make the two 
approaches simpler and more easily understandable. The 
principles used in the proposed approaches are illustrated 
in the following sections.

Section 2 of this paper presents mathematical background 
and related formulae of the proposed approaches. Calculation 
procedures of the two approaches are illustrated in Section 3. 
Section 4 demonstrates validation examples. Finally, concrete 
conclusions are presented in Section 5.

Fig. 2. Illustration of iteration scheme

Fig. 3. Transformation of the spherical coordinates system into the 
Cartesian coordinates system
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THEORETICAL BACKGROUND

As shown in Fig. 1, the idea of the Sumner line consists in 
selecting two parallels of latitudes around the dead reckoning 
(DR) to have two intersections with the EAC of celestial body. 
Captain Thomas Hubbard Sumner (1807-1876) implemented 
the line (called LOP) formed by the two points and projected 
it on the Mercator chart. Since the mathematical procedure 
constructed by Captain Sumner was rather tedious and 
cumbersome to use, Valier’s method was proposed to project 
the LOP on the Cartesian coordinates system for simplifying 
the determination of the AVP [22, 31]. However, this method 
is too rough to obtain the AVP accurately. Because the Sumner 
line has a trial-and-error characteristic, the iteration scheme 
is used to resolve the shortcoming of this characteristic. Since 
the limit concept is available, two points on the EAC can 
be replaced either by a great circle of spherical geometry or 
a straight line of the plane geometry as shown in Fig. 2. It 
should be noticed that the four intersections are moving along 
the EACs. Derivations of the formulae used in the spherical 
and plane geometry are illustrated below. All symbols used 
in this paper are listed in Nomenclature.

Derivation of the formulae used 
in the spherical geometry

We first treat the Earth as a unitary sphere. From the 
viewpoint of the navigator, the Earth coordinate system can 
replace the spherical coordinates system. In this regard, the 
vector for any point K on the Earth’s surface shown in Fig. 
3 can be represented with the latitude „L”  and longitude „λ”  
in a Cartesian coordinates system as follows :

(1)

imilarly, we also treat the celestial sphere as a unitary 
sphere. An astronomical triangle is constructed by the 
Earth, celestial equator and celestial horizon systems of 
coordinates. To increase the solving efficiency and simplify 
the used formulae, the fixed coordinate system and relative 
celestial meridian concept in conjunction with vector algebra 
are applied to derive the related formulae. As shown in Fig. 
4, every point of the spherical EAC, the elevated pole (P) 
and the celestial body (“S” ) form an astronomical triangle  

FPS” . Position vectors and their dot product are illustrated 
in the following.

Equation (2c) is the well-known side cosine law in spherical 
trigonometry. Once the declination (d) and the observed 
altitude (H) of the celestial body as well as the latitude (LF) 
of the AVP are given, the longitude (λF) of the AVP on the 
spherical EAC can be easily yielded.

(2a)

(2b)

(2c)

Fig. 4. An astronomical triangle in celestial navigation

Fig. 5. Three vectors of the great circle equation in spherical geometry

Because the real AVP is unknown, the two parallels, L1 
and L2, are assumed to have two intersections with the EAC 
of celestial body A, that is, A1 and A2, as shown in Fig. 4.  

(3a)

(3b)
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The related formulae are illustrated as follows.

(4a)

(4b)

(4c)

Similarly, the two parallels, L1 and L2, are assumed to have 
two intersections with the EAC of celestial body B, that is 
B1 and B2, the related formulae are shown in the following.

(5a)

(5b)

(5c)

It should be noticed that 10’ term of the equations (4a) 
and (5a) is suggested by [12]. As shown in Fig. 5, three points, 
AVP, A1 and A2, are located in the small circle, that is, EAC of 
the celestial body A. Since the small circle equation varies with 
the different observed altitude, one takes the great circle to 
replace the small circle for simplifying the calculation. Then, 
A1, A2 and Fg can form a great circle taken from the centre of 
the Earth. Because the three vectors are coplanar, the scalar 
triple product is equal to zero [27]. Their vector formulation in 
the Cartesian coordinates system can be expressed as follows:

(6)

Components of the parameter vector                for the 
celestial body A can be expressed as follows:

(7a)

(7b)

(7c)

and the great circle equation (GCE) [5, 8, 9] :

(8)

Once the longitude increment (dλA1Fg) is given, the latitude 
(LFg) can be easily obtained. Hence, rearranging the equation 
(8), one can yield:

(9)

Similarly, components of the parameter vector for the celestial 
body B and the GCE are illustrated, respectively, as follows.

and

(10a)

(10a)

(10a)

(11)

Derivation of the formulae used in the plane geometry

When the Sumner LOP is projected on the Mercator chart, 
the calculation is too complicated to use by the navigator. Due 
to the conformal transformation existing in the rectangular 
coordinate system and the Mercator chart, one can replace 
the Mercator chart by the rectangular coordinate system 
for simplicity. Therefore, position variables of the Earth 
coordinate system, latitude and longitude, can be put in the 
Cartesian coordinates system for calculation, that is, the 
longitude and latitude can replace the values of the x-axis 
and y-axis.

• Geometrical analysis method (Valier’s method)
It is easy to prove that both the latitude increment and 

longitude increment can be derived by using the property 
of similar triangles and proportion by addition. Let’s first 
consider the celestial body A as a viewpoint to derive the 
related formulae as follows.

1. Latitude increment (dLFs or           ) as shown in Fig. 6 
Since ∆A1B1Fs ~ ∆A2B2Fs, their corresponding altitudes 

have the same ratio as a pair of corresponding sides, that is:

(12)

By considering the property of proportion by addition, 
one achieves:

(13)

Rearranging the equation (13) yields

(14)

Longitude increment (dλA1Fs or                 ) as shown in Fig. 6.
Since ∆A1HFs ~ ∆A1QA2, their corresponding altitudes 

have the same ratio as a pair of corresponding sides, that is:

(15)

By considering the property of proportion by addition and 
equation (13), one obtains: 
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(16)

Rearranging the equation (16) yields:

(17)

By observing the equations (14) and (17) as well as 
replacing the rectangular coordinate system with the Earth 
coordinate system, one can find the following equation:

(18)

in which r is the positive increment ratio. Then, the 
equations (14) and (17) can be rewritten respectively as follows:

(19a)

(19b)

Rearranging the equations (19a) and (19b) yields the 
intersection of two Sumner LOPs as follows: 

(20a)

(20b)

Fig. 6. Similar triangles in plane geometry

Similarly, by considering the celestial body B as a viewpoint, 
the related formulae are yielded as follows :

(21a)

(21b)

Rearranging the equations (21a) and (21b) yields the 
intersection of two Sumner LOPs as follows:

(22b)

(22a)

• Algebraic equations method (simultaneous linear 
equations) 

Based on the algebra, the linear equations for Sumner LOPs 
of the celestial bodies A and B can be formulated as follows:

and

(23a)

(23b)

By using the Cramer’s rule the solutions of the above 
equations are :

and

(24b)

(24a)

In fact, the equation (24b) is a combination of the equations 
(20b) and (22b). It is found that the AVP result obtained from 
geometrical analysis method is the same as that from algebraic 
equations method. 

It should be noticed that the longitude increments for the 
celestial body A (dλA1Fg) and body B (dλB1Fg) of the great circle 
are hard to be obtained; therefore, the longitude increments 
of the great circle needs to be replaced by those of the straight 
line, that is, dλA1Fs and dλB1Fs. Consequently, the equations (9) 
and (11) can be rewritten as follows:
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CONSTRUCTING THE SOLVING 
PROCEDURES

In this section, determining the AVP by taking the great 
circle of spherical geometry to replace the EAC is called the 
Sumner-GC approach, while using the straight line of the 
plane geometry to replace the EAC is called the Sumner-SL 
approach.

Sumner-GC approach

Step 1. The four intersections can be obtained by using 
equations (4a), (4b) and (4c) for A1 and A2, while using the 
equations (5a), (5b) and (5c) for B1 and B2. 

Step 2. The longitude of the possible AVP from the celestial 
body A is determined by using the equations (18) and (20b) or 
that from the celestial body B is yielded by using the equations 
(18) and (22b).

Step 3. The latitude of the possible AVP from the celestial 
body A is determined by using the equations (19b) and (25) 
or that from the celestial body B can be yielded by using the 
equations (21b) and (26).

Step 4. The iteration scheme is introduced to reach the 
real AVP if the AVPs calculated from the celestial bodies A 
and B are different and the real AVP is not ensured, then the 
iterating step 1 to step 3 is necessary.

Sumner-SL approach

Step 1. The four intersections can be obtained by using the 
equations (4a), (4b) and (4c) for A1 and A2, while by using the 
equations (5a), (5b) and (5c) for B1 and B2. 

Step 2. The latitude of the possible AVP is determined by 
using the equations (18) and (24a). 

Step 3. The longitudes of the possible AVP from the 
celestial body A or celestial body B are determined by using 
the equations (18) and (24b), respectively. 

Step 4. The real AVP is not ensured until the iterating step 
1 to step 3 is performed. 

VALIDATION EXAMPLES AND 
DISCUSSIONS

Validation examples

Example 1.  The 2011 DR position of a vessel is” L 39°00.0’ 
N,λ 157°10.0’ W” . At 20-11-26, the star Spica is observed with 
a sextant. At 20-07-43, shortly before the above observation, 
another star, the Kochab is spotted. The navigator records the 
needed information and further reduces it from the nautical 
almanac for sight reduction as shown in Tab. 1 (Bowditch, 
2002. pp.301-303).

Tab. 2. Detailed solving procedures used in the Sumner-GC approach for 
example 1

Tab. 3. Detailed solving procedures used in the Sumner-SL approach for 
example 1

Available methods: The AVP can be determined by the 
proposed Sumner-GC approach and Sumner-SL approach.

Solution:
1. By using the Sumner-GC approach with the iteration 

scheme, the AVP, L 39°00.0’ N, λ 156°21.7’ W, can be 
determined without plotting. Results and detailed 
solving procedures are listed in Tab. 2.

2. By using the Sumner-SL approach with the iteration 
scheme, the AVP, L 39°00.0’ N, λ 156°21.7’ W, can be 
determined without plotting. Results and detailed 
solving procedures are listed in Tab. 3.

Remark: The true AVP is pointed at L 39°00.0 N, λ 156°21.7’  
W and has been validated in [7]. In general, the distortion 
of the EAC at low observed altitude will be larger than that 
at high observed altitude; however solutions of our two 
approaches with the iteration scheme for this example are 
both the same as the true AVP. It means that the proposed 
approaches are accurate and verified through this example. 

Example 2. The 1224 DR position of a vessel is L 20°17.4’  
N, λ 50°07.4’ W. The ship in on course 127° at speed of 18 



POLISH MARITIME RESEARCH, No 4/2014 9

knots. The navigator observes the lower limb of the Sun 
twice. The first observation is made at 12-15-15. The second 
observation is made at 12-24-13. The navigator records the 
needed information and further reduces it from the nautical 
almanac for sight reduction as shown in Tab. 4 [3].

Available methods: The AVP can be determined by the 
proposed Sumner-GC approach (approach 1) and Sumner-SL 
approach (approach 2), further plotting the graphic AVP 
on the universe plotting sheet (UPS) to illustrate iteration 
scheme.

Tab. 4. Needed information for solving the AVP in example 2

Tab. 5. Detailed solving procedures used in the Sumner-GC approach for 
example 2

Tab. 6. Detailed solving procedures used in the Sumner-SL approach for 
example 2

Fig. 7. Illustrations of the AVP with iteration scheme on the UPS in example 2

Solution:
1. By using the Sumner-GC approach with the 

iteration scheme, the AVP, L 20°08.0’ N, λ 50°05.7’  
W, can be determined without plotting. Results 
and detailed solving procedures are listed in Tab. 5 
and the graphic AVP on the UPS is shown in Fig. 7.

2. By using the Sumner-SL approach with the iteration 
scheme the AVP, L 20°08.0’ N, λ 50°05.7’ W, can be 
determined without plotting. Results and detailed 
solving procedures are listed in Tab. 6 and the 
graphic AVP on the UPS is shown in Fig. 7.
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Remark: The solved AVP in [3] is L 20°09.0’ N, λ 50°06.0’  
W. This solution should be inaccurate because the EAC 
projection on Mercator chart will be distorted. Since example 
1 has validated our two approaches and both of approaches 
1 and 2 yield the same solution for the AVP in this example, 
the true AVP can be ensured. As shown in Tab. 7 and Fig. 8, 
the iteration numbers of the two approaches are the same. 
It means that the great circle and the straight line are very 
close to each other in the small area of spherical surface. 
Besides, it is found that when the positive increment ratio (r) 
approaches to 0.5, the result of the iteration scheme will reach 
true AVP. In summary, both approaches are more versatile 
and accurate than those conventional methods used in the 
maritime education or practical operation.

 Although the proposed approaches are originated from 
the Sumner line’s idea, which had been formulated a long 
time ago, yet the iteration scheme can be adopted in the 
solving procedures as the computation technology develops 
nowadays. After conducting this research work, we state that 
originality of the past valuable concept might find its useful 
applications, depending on how we make use of presently 
developed technology.

Tab. 7. Iteration results by using the approach 1 and approach 2 for 
example 2

Fig. 8. Central part of Fig. 7 in larger scale

CONCLUSIONS

In this paper, based on the Sumner line’s idea, two 
approaches have been developed to determine the AVP. 
By way of assumed latitude interval, intersections of two 
straight lines and two great circles formulate the schemes of 
the two approaches, respectively. Due to the trial-and-error 
characteristic of the Sumner line’s idea, the iteration scheme 
and the limit concept are implemented to reach the real AVP. 
The calculation procedures of the two approaches are also 
adjusted to practical usage. Several validation examples have 
verified the proposed approaches successfully. It is shown that 
the new approaches can determine the real AVP more versatile 
and accurate than those obtained from conventional methods, 
the HAO and the IM, used in the maritime education or 
practical operation. 
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