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ABSTRACT

A technique for solving celestial fix problems is proposed in this study. This method is based on Particle Swarm 
Optimization from the field of swarm intelligence, utilizing its superior optimization and searching abilities to obtain 
the most probable astronomical vessel position. In addition to being applicable to two-body fix, multi-body fix, and 
high-altitude observation problems, it is also less reliant on the initial dead reckoning position. Moreover, by introducing 
spatial data processing and display functions in a Geographical Information System, calculation results and chart work 
used in Circle of Position graphical positioning can  both be integrated. As a result, in addition to avoiding tedious 
and complicated computational and graphical procedures, this work has more flexibility and is more robust when 
compared to other analytical approaches.

Keywords: Particle Swarm Optimization; Celestial navigation; Intercept method

INTRODUCTION

Even today, when navigation is dominated by GPS, 
a traditional celestial fix still serves as a valuable backup measure. 
Nevertheless, as we enter the 21st century, traditional methods for 
computing a fix using celestial navigation can no longer meet the 
requirements of modern vessels in terms of calculation speed and 
precision. The need arises for further improvements that utilize 
information technology. The 2010 amendment to the STCW 
Code placed a continuing emphasis on celestial navigation–
related education and training. It also encouraged the usage of an 
electronic nautical almanac and celestial navigation calculation 
software. In response, many researchers have resorted to 
computer programs to deal with celestial navigation positioning. 
Problems that could not be solved previously using an inspection 
table can now be solved with the Spherical Triangle Method or 
the Vector-Matrix method, which give vessel positions directly. 
With these efforts, great advancements have been made in 
celestial navigation technology. 

Because the independence of celestial navigation can 
complement other navigation methods, research into how 
to apply information technology in a celestial navigation 
approach proves especially relevant. This study uses 
particle swarm optimization (PSO) from the field of swarm 
intelligence, which mimics natural swarm optimization 
behaviours, due to its superior search ability. This technique is 
combined with a geographical information system (GIS) and 
the principle of using celestial circles of equal altitude for a fix 
to give a fast and accurate calculation of the Most Probable 
Position (MPP). The proposed method and framework can 
potentially be integrated into an Electronic Chart Display 
and Information System (ECDIS).

PRINCIPLES OF A CELESTIAL 
NAVIGATION FIX

The purpose of celestial navigation, as traditionally 
practiced, is to determine the latitude and longitude of 
a vessel at a specific time, through observations of the altitudes 
of celestial bodies, which are used to determine the observed 
circle of position (COP). When more than two sets of data 
are obtained, the vessel’s position can be calculated through 
graphical, combined graphical and computational, or direct 
computational procedures using sight reduction methods such 
as High-Altitude Observation and the Intercept Method (IM), 
or computational methods. The basic principles of a celestial 
fix remain unchanged today, and are the basis for a number of 
methods. The following is a review of several celestial navigation 
fix methods with their respective advantages and shortcomings.

CIRCLE OF POSITION FIX PRINCIPLE
 

According to the relationship between celestial and Earth 
coordinates, in which they are each other’s projections, an 
observer’s COP is the projection of the circle of zenith distance 
onto the surface of the Earth. The centre of the COP is the 
Geographic Position (GP) of the celestial body. The radius of 
the circle is the zenith distance (co-altitude) of the celestial 
body (Figure 1). In order to estimate the vessel’s position, 
one must observe at least two celestial bodies from the same 
location, thus producing two celestial COPs and two points of 
intersection. The point of intersection closest to the estimated 
vessel position is the observed vessel position. The principle 
of the COP fix is quite simple and can theoretically be carried 
out as long as one can plot the COP directly onto a chart.
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However, it is not feasible in practice for the following 
reasons. Firstly, the radii of most circles of equal altitude 
are too large to be plotted on a chart. Secondly, graphical 
distortion at high latitudes is apparent on the commonly used 
Mercator chart, and the distortion increases with the latitude 
of the GP. Therefore, a graphical fix by directly plotting the 
COP is limited only to high-altitude observations. However, 
a high-altitude observation is only suitable for an observed 
altitude of greater than 87° (Chen et al., 2003). It is difficult 
to use a sextant for high-altitude sighting, and the probability 
of a bright star being near the zenith at any given time and 
place is small. Thus, there is little desire for high-altitude 
observations in ordinary navigation.

Fig. 1. The COP fix principle

LINE OF POSITION FIX PRINCIPLE

Because the altitudes of most celestial bodies are less than 
87°, Marcq de St Hilaire first introduced the Assumed Position 
(AP) to form the altitude difference, or the Intercept Method 
(IM), to overcome the limitation of high-altitude observations 
(Peacock, 2011), which has become the basis of virtually all 
present-day celestial navigation methods. The basic concept 
of the IM is to choose an AP at the nearest probable position 
and take it as the reference position to calculate the altitude 
and azimuth. By comparing the computed altitude (Hc) 
and observed altitude (Ho), the difference between the two 
altitudes (called the intercept or altitude difference) can be 
obtained. Therefore, once the AP, the computed azimuth of 
the body, and the intercept are all determined, the Line of 
Position (LOP) can be plotted. The COP can then be converted 
to the line of position (LOP). 

However, the entire process consists of observing, 
calculating, and plotting. Even when performed by 
professional seafarers, one astronomical positioning will 
take around 20 minutes. Moreover, the accuracy of finding 
astronomical vessel positions by the IM is subject to the 
following two restrictions:

1. The distance between the AP and vessel’s actual 
position largely affects the accuracy of the result. 
Therefore, this distance should not exceed 30 nautical 
miles (NM).

2. When the altitude of the observed celestial body 
exceeds 70° or the vessel is navigating in waters at 
high latitude, the resulting error of curvature will 
increase when using the LOP in lieu of the COP on 
the Mercator Chart. 

Because of these restrictions limiting the accuracy, the IM 
has inherent drawbacks. Thus, a direct computation method 
is required, and the concept of the circle of equal altitude is 
reconsidered.

DIRECT COMPUTATION METHOD FOR CELESTIAL 
NAVIGATION FIX

 
With recent advances in information technology, the 

problems of the celestial navigation fix can be solved using 
the Spherical Triangle Method, the Vector-Matrix Method, 
or other computational methods with the aid of computer 
programs. There are three classes of solutions:

1. Exact solutions to a two-body fix, such as those by 
Chiesa and Chiesa (1990), Spencer (1990), Gibson 
(1994), Chen et al.(2003), Hsu et al. (2005) and González 
(2008). These methods are based on full 3-D geometry, 
vector solution, or spherical trigonometry, and are not 
dependent on approximations or an assumed position. 

2. Methods which are based on straight lines of position 
(each of which is a small arc of a circle of position) on 
a flat Earth near an estimated or assumed position. 
These methods can be applied to any number of 
observations ≥ 2. Traditional hand-calculation and 
chart-based methods fall into this category, as does 
the least-squares method by DeWitt (1974), which 
was independently derived by Yallop and Hohenkerk 
(1990) and described in the Nautical Almanac and 
used in HMNAO’s NavPac software. 

3. Other least-squares techniques, including those of 
Watkins and Janiczek (1978), Severance (1989), Metcalf 
and Metcalf (1991), Kaplan (1995) and Wu (1991), are 
not based on circles or lines of position at all. Although 
they minimize the sum of the observational variances 
(the variance being the square of the altitude intercept) 
they do not rely on any geometric approximations. 
Some of them require an estimated (a priori) position, 
and in the case of Kaplan’s algorithm, an estimated 
course and speed. Tsou (2012) employs genetic 
algorithm, similar to this study, to solve celestial 
navigation fix problems. This method can prevent 
from converging toward a local optima, but require 
a longer calculation time. 
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If direct computation is adopted, the choice of initial 
reference positions, such as the DR position or the EP, can 
be unconstrained. Furthermore, the previously described 
limitations are eliminated. In a computational procedure, the 
precision of a solution is no longer a major issue, as no graphical 
procedures and tables are required. In these circumstances, 
upon obtaining an accurate celestial Greenwich Hour Angle 
(GHA) and Declination (Dec), the precision of a celestial fix 
primarily depends on the accuracy of the observed altitude 
of the celestial body, provided that calculations are carried 
out correctly. This study is founded on these principles and 
improves upon the theory of the COP fix.

CELESTIAL NAVIGATION FIX BASED ON 
PARTICLE SWARM OPTIMIZATION

 
This study utilizes the PSO technique from the field 

of swarm intelligence to solve celestial fix problems. 
Modifications are made specifically for its integration and 
implementation into celestial navigation.

DIRECT FIX USING THE EQUATION OF COP. 
 

In this study, the central idea behind the celestial circle 
of equal altitude fixing is to find the best fit to the altitude 
of a celestial body observed as a function of time. The Hc of 
a celestial body is given as a function of the Dec and GHA 
of the celestial body, and the observer’s probable longitude 
(λ), and latitude (L) by:

where i = 1, …, n stands for the ith celestial body and its 
observation data.

The GHA and the Dec can be found according to time of 
observation in the Nautical Almanac or its electronic edition. 
Equation 1 is the equation of the celestial COP. Since the 
actual vessel position can be seen as a function of the altitude 
of the celestial body, which is a nonlinear function of L and 
λ, we cannot solve Equation 1 directly. Therefore, the latitude 
and longitude of the actual vessel position may be obtained 
by comparing the difference between Hc and Ho using the 
PSO technique and an appropriate fitting algorithm. With 
all the appropriate Dec and GHA values in Equation 1, any 
combination of altitudes of celestial bodies can be used. 

PARTICLE SWARM OPTIMIZATION 

PSO is a computational method that was originally proposed 
by Eberhart and Kennedy (1995) for simulating behaviours 
in a bird flock to optimizes a problem by iteratively trying to 
improve a candidate solution with regard to a given measure 
of quality. When using PSO to solve optimization problems, 
the solution corresponds to the position of a particle in the 
search space. Each particle has its own position and velocity, 
which decides the direction and distance of movement. In the 
process of iteration, every particle’s movement is influenced 
by its local best-known position (pbest) and is also guided 

(1)

toward the best-known position (gbest) in the search-space, 
which are updated as better positions are found by other 
particles. This is expected to move the swarm towards the 
best solutions. PSO does not require that the optimization 
problem be differentiable as is required by classic optimization 
methods such as gradient descent and quasi-Newton methods 
and can search very large spaces of candidate solutions. 

Particle information can be represented by an 
n-dimensional vector. Its position can be expressed by  
X = (x1, x2, …, xn), and its velocity by V = (v1, v2, …, vn). The update 
equations for particle velocity and position are, respectively:

and

where w is the inertial coefficient, the main purpose of 
which is to generate a disturbance in order to prevent the 
calculation from becoming trapped in a local optimum. The 
maximum value of w is 0.9, and it decreases linearly with 
the evolutionary process to 0.4. A larger w means a stronger 
global optimization capacity and a weaker local optimization 
capacity, and vice versa. The terms c1 and c2 are acceleration 
coefficients (or learning factors). Usually, c1 = c2 and both 
are random numbers in the interval [0, 2]. The coefficient c1 
adjusts the flying velocity towards the best-known solution 
of the particle, while c2 adjusts the flying velocity towards 
the best-known solution of the entire swarm. Overly small 
values of c1 and c2 may cause particles to move further away 
from the target area and, conversely, overlarge values of c1 
and c2 can result in them overshooting the target area. The 
values r1 and r2 are random numbers in the interval [0, 1]. 
The velocity v is usually limited to a certain range, i.e., it lies 
in the interval [−vmax, vmax]. 

This study also includes the concept of a constriction factor 
that was later proposed by Kennedy and Eberhart (1997). It 
further improves on Equation (3) with:

and

where f = c1 + c2 and n is the constriction factor. Similar to 
vmax, it is used to control and constrain the particle velocity. 
It also enhances the local search ability of the algorithm and 
improves the overall convergence.

The underlying principles and mechanisms of PSO are 
relatively simple, and the algorithm is easy to realize. At 
present, multi-body fixes in celestial navigation positioning or 
computer programs for the IM generally use the least squares 
mean method. However, a least squares mean method that 
proceeds from some initial value by decreasing the gradient 
of the goodness-of-fit parameter can converge to a local 

(2)

(3)

(4)

(5)
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minimum that is not the best solution when high-altitude 
observations are used (Metcalf and Metcalf, 1991). It was 
found in this study that the PSO method cannot only avoid 
this problem, but also possesses some advantages over other 
computational methods. Ten particles were used in this study. 
Each particle X represents a possible vessel position. It has 
two dimensions: longitude and latitude. The MPP is searched 
for using the optimization mechanism of the PSO method. 
More observation data will produce better estimation results.

DESIGN OF THE OBJECTIVE FUNCTION
 

In the past, the most optimal vessel position in the majority 
of multi-body celestial fixing problems was solved for by data 
fitting. In this study, the variance of the altitude residuals 
is minimized through PSO. The altitude residual is defined 
as the difference between Ho and the Hc computed from 
Equation 1:

(6)

The aim of Equation 6 is to find the most appropriate 
location (of longitude and latitude) in the solution space 
from the observational data of n celestial bodies so that F is 
minimized. When the result converges to meet the acceptance 
criteria, the MPP is found.

CONSTRAINT CONDITIONS  

Although PSO is not sensitive to initial conditions, the 
position of each particle X can be determined according 
to whether a reference position exists. If there is one, the 
particle position is chosen randomly based on this reference 
position and limited to the search range. Otherwise, the 
particle position can be any random location on the Earth. 
The reference position here is essentially different from the 
AP or the DR position in the IM. The reference position in 
this study is used to limit the search range and provide the 
effects of a heuristic search. Therefore, although the reference 
position can be set to be the same as the DR position, there 
is no limitation imposed on the DR position in the IM that 
the distance to the actual vessel position cannot exceed 30 
NM. It is only an approximate reference position, and it can 
be hundreds or even thousands of NMs away.

However, a reference position closer to the DR position 
will result in a faster convergence. Therefore, if a DR position 
is available, it should be used as the reference position to 
accelerate the search. A reference position should be set 
in two-body celestial fix problems in order to determine 
which one of the two points of intersection from the COPs 
of the two celestial bodies is the actual vessel position. Multi-
body celestial fixing does not require an initial guess for the 
position in this study, which means that a reference position 
does not need to be set. However, the number of iterations 
can be reduced by setting one, thus speeding up the search. 
The velocity of each particle must be within the search range.

CORRECTION OF THE OBSERVED ALTITUDE IN 
 A RUNNING FIX.  

When performing the multi-body celestial fix at sea, 
there is some time difference between observations. It 
is therefore necessary to correct the zenith of the COP 
in the last observation to the same zenith position of the 

following observation. When the distance travelled between 
two consecutive observations does not exceed 30 NM, the 
following formula is used to calculate the correction of the 
altitude (Δh) in the running fix:

in which V is the speed (in knots), ΔA is the angle between 
the observed azimuthal direction of the celestial body and 
the true course of the vessel, and ΔTm is the time interval (in 
minutes) between the two observations. 

PLOTTING THE COP
 

Due to the large radius of the COP and graphic distortion 
at high latitudes when conducting graphical positioning on 
the Mercator chart, the application of direct graphical fix 
method was restricted to high-altitude observations. If the 
functionality of the GIS can be further modified, then the 
previous limitations on positioning with manual chart work 
will not apply on an electronic chart under a GIS environment.

This study proposes to include a function that constructs  
a COP, based on vector analysis (González, 2011), in a celestial 
navigation fix module in GIS. As long as there is a GP of 
the celestial body and a Ho, the entire COP can be directly 
constructed in a GIS environment in any projection. By utilizing 
the spatial analysis function in a GIS to obtain intersection points 
of the COP, the vessel’s position can be measured, which can 
then facilitate positioning and serve as an aid to set the initial 
position, to assess the likely accuracy of the fix .

RESULTS VALIDATION 

The validity of this study was verified by using observation 
data from both two celestial bodies and multiple celestial 
bodies, and also by using data at high altitude. Using several 
important methods of astronomical navigation fixing 
published in the literature in recent years, three cases were 
tested and compared. The adopted comparison methods are: 
the traditional IM; the computerized IM by DeWitt (1974) 
that was published in the Nautical Almanac, U.S. Naval 
Observatory (Kaplan, 1995); the vector-matrix method by 

(7)
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Metcalf and Metcalf (1991); the Simultaneous Equal-Altitude 
Equation Method (SEEM) by Hsu et al., (2005); and the vector 
analysis method by González (2008). The methods proposed 
by Hsu et al., and González are only applicable in a two-body 
celestial fix. The other methods do not have this restriction. 
Visual Basic.Net 2010 was used as the development tool. In 
order to plot the COP and to add visual effects, the COM 
component of the GIS was also used. This was also used for 
education on celestial navigation and integration with an 
ECDIS in the future.

TWO-BODY FIX

The data for this case study was taken from Hsu et al., 
(2005). It only contains observational data of two celestial 
bodies. All methods were tested using two different DR 
positions. Table 1 contains the relevant observation data 
and the results are presented in Table 2.

Tab. 1. Extract of relevant information from Hsu et al. (2005) for two-body 
observation

Tab. 2. Two-body fix positions

Fig. 2. Results of the two-body fix by PSO

The experimental results of the PSO are shown in Figure 2. 
Before execution, two COPs may first be plotted and displayed 
through a GIS module. The vessel position can be measured by 
mouse control and is used as a reference for setting a reference 
position. It can be seen from Table 1 that the observed altitude 
of Alkaid is as high as 77° 34.9’, which exceeds the upper limit 
of 70° specified in the IM. Hsu et al., (2005) found that for 
high-altitude observation, an LOP drawn using the IM was 

shifted due to curvature error, thus resulting in an inaccurate 
vessel position. It can be seen in Table 2 that all methods 
but the traditional IM can find the correct vessel position 
when the first DR position (DR 1) is used; i.e., the distance 
between the DR position and the actual vessel position is less 
than 30 NM. This implies that the traditional IM indeed has 
a limitation on the observed altitude. 

It is worth noting that the method proposed by Metcalf 
was designed for a multi-body celestial fix. When used in 
a two-body fix, a virtual star must be assumed, and the 
latitude of the DR position is set to be its Dec. The longitude 
of the DR position needs to be converted to the GHA of the 
star. The computation can be performed after setting the 
observed altitude of the star as 90°. Therefore, the accuracy 
of positioning when using Metcalf ’s method in a two-body 
fix is affected by the selected DR position.

In the case of the second DR position (DR 2), a greater 
error occurs in the IM due to the larger distance between 
the DR position and the actual vessel position. DeWitt’s 
method can reach the correct vessel position after 5 iterations. 
Metcalf ’s method, meanwhile, has produced a noticeable 
error. Although other methods, including PSO, can obtain the 
correct vessel position, some degree of prior DR knowledge 
is needed to help identify the answer. However, relatively 
speaking, the requirement on the accuracy of the initial 
position is lowered.

Some unlikely extreme experiments are designed in this 
study. One experiment is setting the DR position north of  
L = 60° N, λ = 17° W, i.e., with high latitude and far away. 
Another is to have two COPs intercept at only one tangent 
point. In these two cases, the IM, DeWitt, and Metcalf 
methods fail while the other methods can still give the correct 
vessel position. 

MULTI-BODY FIX.  

There are four celestial bodies involved in this case study. 
Table 3 presents the relevant observation data. In this multi-
body fix problem, a correction on the running fix is also 
applied. González’s and Hsu’s methods are not applicable in 
this situation. The experimental results are tabulated in Table 
4 and Figure 3. The vessel position obtained using the IM is 
slightly different due to errors in the graphical procedures. 
All other methods reach the same vessel position. Metcalf ’s 
method and the PSO technique do not require a DR position 
to find the correct vessel position.

Moreover, in a multi-body celestial fix, to prevent some 
abnormal observation data from affecting the overall 
accuracy, a correction on the weights is applied. Those closer 
to the vessel position are given a larger weight. This point is 
explained by comparing Figures 4 and 5. The vessel position 
in Figure 4 is obtained without applying weight correction, 
and it is at the centre of the big cocked hat. Figure 5 shows 
the vessel position with corrected weights, in which case it 
falls into the smaller cocked hat.

Results obtained using PSO show a good agreement with 
those obtained using other methods. The applicability of PSO 
on both the two-body fix and multi-body fix is thus verified.
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Tab. 3. Multi-body fix data

Tab. 4. Multi-body fix positions

Fig. 3. Results of the multi

-body celestial fix by PSO

Fig. 4. Vessel position with uncorrected weights

Fig. 5. Vessel position with corrected weights

HIGH-ALTITUDE OBSERVATION FIX

In this example, a high-altitude observation of the Sun 
was performed three times before and after its transit. When 
the Sun is in a low latitude region within a few minutes of 
the transit, its altitude can reach above 88°, and its azimuth 
changes remarkably fast. In this situation, the curvature of 
the LOP makes the IM inappropriate to use. A high-altitude 
graphical method or a computational method must be used. 
Therefore, if 2–3 observed altitudes of the Sun before and 
after the transit time are available, then the vessel position 
can be obtained from a high-altitude observation of the Sun. 
Table 5 contains observation data of the Sun’s altitude, and 
experimental results are shown in Table 6.

Tab. 5. High-altitude observations

 Tab. 6. High-altitude fix positions

The experimental results of using PSO are shown in Figure 6. 
The COPs from three observations of the Sun give two points 
of intersection, A and B. The two points are very close, and 
therefore an inappropriate DR position will lead the algorithm 
to converge to a non-optimal position. It can be seen from 
Table 6 that the PSO and Metcalf methods do not require  
a DR position as reference. As a result, they can find the 
correct vessel position, or point A.

On the other hand, DeWitt’s method is sensitive to the 
initial DR position. When the DR position is DR 1, the 
correct vessel position can be obtained. However, when the 
DR position is DR 2, DeWitt’s method finds point B as the 
vessel position, which is incorrect. Since B and DR 2 are only 
about 20 NM apart, the algorithm is mistaken in finding the 
correct vessel position when in fact it has fallen into a local 
optimum.

Fig. 6. Results of a high-altitude observation using PSO
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COMPARISON AND DISCUSSION

By comparing the three test cases, it can be determined 
that, although González’s and Hsu’s methods are accurate 
and do not need an AP to solve the problem, they are limited 
to only a two-body celestial fix. DeWitt’s method, Metcalf ’s 
method, and the PSO method proposed in this study can 
perform the fix with any number of celestial bodies and 
therefore have a wider applicability. Metcalf ’s method is very 
convenient, fast, and accurate at solving a multi-body fix and 
high-altitude observations. However, it becomes inconvenient 
for solving a two-body fix, in which case a virtual star must 
be assumed based on the DR position. The accuracy of the 
positioning is affected by the DR position. It also violates 
Metcalf ’s claim that positioning can be performed without 
needing a DR position as a reference. DeWitt’s method has 
wide applicability and can produce an accurate fix. However, it 
is still an IM in nature, which means that it has some inherent 
limitations. The accuracy must be improved by increasing the 
number of iterations. It is also possible for the algorithm to 
converge to a non-optimal solution.

The PSO method proposed in this study is applicable in all 
cases. It is not only accurate and robust, but also relies less on 
the DR reference position. However, the PSO consumes more 
computational time than the other methods. Though, a correct 
vessel position can be obtained within 10 iterations (less than 
2 seconds) that can still meet the real time requirement for 
modern marine navigation. 

CONCLUSIONS

In this work, we utilized Particle Swarm Optimization from 
the field of swarm intelligence, due to its superior optimization 
and searching ability, to compute the astronomical vessel 
position. This technique, used in combination with the GIS 
and the principle of using circles of position in a celestial 
navigation fix, allows for a fast, direct, and accurate calculation 
of a vessel’s optimal position. Test results showed that the 
proposed method not only can be applied in two-body fix, 
multi-body fix, and high-altitude observation problems, but 
it is also less reliant on the initial dead reckoning position. In 
combination with an electronic nautical almanac module, it 
can be seen as a prototype for integration with an ECDIS. It 
can serve as an ancillary positioning option and as a useful 
tool in celestial navigation–related education.
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