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ABSTRACT

This paper discusses the numerical evaluation of the hydrodynamic characteristics of submerged and surface piercing 
moving bodies. Generally, two main classes of potential methods are used for hydrodynamic characteristic analysis 
of steady moving bodies which are Rankine and Kelvin-Havelock singularity distribution. In this paper, the Kelvin-
Havelock sources are used for simulating the moving bodies and then free surface wave patterns are obtained. Numerical 
evaluation of potential distribution of a Kelvin-Havelock source is completely presented and discussed. Numerical results 
are calculated and presented for a 2D cylinder, single source, two parallel moving source, sphere, ellipsoid and standard 
Wigley hull in different situation that show acceptable agreement with results of other literatures or experiments.
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INTRODUCTION

A number of numerical methods for computing free-
surface flows of ship forms are presented as robust and 
accurate on the basis of favorable comparisons between 
numerical predictions and experimental measurements. As 
a matter of fact, numerical predictions of free-surface flows 
about ship forms, including the steady-flow case of specific 
interest here, are notoriously unreliable, as is documented 
in Andrew et al. [1], Newman [3-4], Chen and Noblesse [4], 
Telste, and Noblesse [5], Hendrix and Noblesse [6]. Other 
trends of ship hydrodynamics including wave resistance in 
calm water were reviewed in Bulgarelli et al. [7]. On the other 
hand, some historical perspectives and reflections of ship 
waves were given by Tulin [8].  Compressive description on the 
ship resistance computations have been presented by Larrson 
and Baba [9]. Comparison of different approach for the ship 
resistance calculations carried out by Gatchell et al [10]. A 
3D linear analysis of steady ship motion in deep water have 
presented in the Ph.D. dissertation [11]. Baar and Price also 
contain extensive comparisons of the authors own Kelvin-
Havelock numerical predictions with experimental data [12]. 

A desingularized boundary integral method for fully 
nonlinear free-surface problems was described Cao et.al. 
[13]. An integral boundary element method (Rankine 
panel) to solve the flow around surface piercing hydrofoils 
and ships was presented by Hsin et.al. [14] as well as two 
iterative procedures for small and large Froude numbers were 
presented for fully submerged two dimensional hydrofoils 
under a free surface by Yasko et.al.[15]. Ghassemi et al. [16] 
and Ghassemi & Kohansal [17] have presented the nonlinear 
generated wave pattern due to three dimensional moving 
bodies. More detail formulae for 2D and 3D free surface 
flows due to moving disturbances have been presented by 
Tuck et al [18], Parau & Vanden-Broeck [19] and Uslu & Bal 
[20]. Javanmardi et al worked the prediction of wave patterns 
at large distances from a moving body in a confined channel 
[21]. In order to minimize the total resistance of a ship, an 
optimization of the hull shape investigated by Sun et al [22] 
and Zakerdoost et al [23]. The total resistance is assumed to 
be the sum of the wave resistance computed on the basis of 
the thin-ship theory and the frictional resistance. Smoothness 
of hull lines is proved with mathematical procedure, in which 
differentials of the hull lines functions are analyzed. The 
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wave-making resistance optimization, involving a genetic 
algorithm, uses Michell integral to calculate wave resistance. 
Recently, the computational results for KRISO Container Ship 
(KCS) are presented. CFD analyses are performed to simulate 
free surface flow around KCS by using RANS approach with 
success. Also, the complicated turbulent flow zone behind 
the ship is well simulated [24]. 

A major difficulty of the Kelvin-Havelock approach resides 
in the mathematical complexity of the corresponding Green 
function, often referred to as the Kelvin-Havelock source. 
Indeed, the complexity of the Kelvin-Havelock source and 
the simplicity of the Rankine source no doubt are major 
recommendations for using the Rankine-source approach. 
However, the Kevin-Havelock source offers several important 
advantages compared with the Rankine source. In particular, 
the radiation condition that steady gravity waves do not 
exist ahead of a moving ship is automatically and exactly 
satisfied in the Kelvin-Havelock approach, whereas this 
radiation condition must be numerically simulated in the 
Rankine-source approach. Also, the infinite free surface 
must be truncated in some manner in Rankine source 
approach, whereas the infinite free surface is automatically 
reduced to a finite one in the Numann-Kelvin approach. 
The need for numerically simulation the radiation condition 
and for truncating the infinite free surface represents two 
basic difficulties of the Rankine-source approach. Another 
advantage of the Kelvin-Havelock source follows from the fact 
that it satisfies a linearized free surface boundary condition 
that provides a reasonable approximation to the exact free 
surface condition for many practical applications. In this case, 
there is no need for a free surface singularity distribution and 
the Kelvin-Havelock source can be used to obtain a simple 
approximate expression for the velocity potential of the flow 
about a ship that is defined explicitly in terms of the ship 
speed, size and shape.

In this paper, an efficient manner of evaluating Kelvin-
Havelock source Green function are presented and then the 
procedure have been employed for submerged cylinder, sphere 
and ellipsoid and a Wigley hull. Wave pattern of the free 
surface are obtained and shown by the numerical method in 
qualitatively and quantitative. The validation of the present 
method is confirmed by showing good correlation with the 
available data.

MATHEMATICAL FORMULATION 
OF THE PROBLEM

A three dimensional moving body at a constant velocity 
(U) at or beneath the surface of a fluid of infinite depth is 
considered. The sketch of the body and flow are given in Fig. 1. 
The fluid is assumed to be inviscid, incompressible and the 
flow to be irrotational. 

It was chosen a Cartesian frame of reference moving bodies 
and assumed that the flow is steady. The Cartesian coordinates 
(x, y, z) is chosen with the z-axis directed vertically upwards 
and the x-axis in the opposite direction of the velocity (U). 
The equation of the free surface is denoted by z = η(x, y).

Fig. 1. Definition of coordinate system

Perturbation potential, Ø, and total potential, Φ, should 
satisfy Laplace’s equation in the fluid domain.

= = 0 (1)

Three boundary conditions on the free surface are given 
as follows:

I) KINEMATIC BOUNDARY CONDITION 
ON THE BODY SURFACE: 

The flow should be tangent to the wetted surface of the 
body:

= (  ). = . (2)

where = (  ). = . is the unit normal vector to the wetted surface of 
the body, directed into the fluid domain.

II) KINEMATIC FREE SURFACE CONDITION:

The fluid particles should follow the free surface,

( , , )
= 0       = ( , ) (3)

where F(x, y, z) = z – η(x, y)  and η is the free surface 
deformation.

III) DYNAMIC FREE SURFACE CONDITION:

The pressure on the free surface should be equal to the 
atmospheric pressure (ρatm). Applying Bernoulli’s equation, 
the following equation can be obtained:

1

2
[( ) ] + = 0     = ( , ) (4)

where g is the gravitational acceleration.
If eq. (3) and eq. (4) are combined and linearized, then the 

following free surface condition can be derived:

+ = 0          = 0 (5)
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Here, =  is the wave number.

IV) RADIATION CONDITION:

No upstream waves should occur. In order to prevent 
upstream waves, both the first- and second-order derivatives 
of perturbation potential with respect to x are forced to be 
equal to zero for the upstream region on the free surface.

= = 0               (6)

V) INFINITE DEPTH CONDITION:

The perturbation potential should go to zero for infinite 
depth.

lim  0 (7)

Finally after computing the potential distribution on free 
surface, the wave elevation is computed as follows:

= (8)

NUMERICAL SCHEME

Applying the integral representation for the potential 
function (p), Green’s second identity can be written as:

( ) = [ ] (9)

where e is a coefficient that its value depends on the position 
of the field point p in the fluid domain. If point p is placed on 
the boundary (body surface), then the coefficient e is replaced 
by 0.5. If point p is placed inside and outside of the body then 
the value of e is one and zero, respectively.

Also, G is the Green function of a Kelvin-Havelock source 
which it will be discussed hereafter. This Green function has 
3 parts and we need to be able to solve it for a sample source 
and then use the solution for whole body. The Green function 
for a source in (x, y, z) which translates uniformly with speed 
U in infinite fluid and for an observation point in (x, y, z) is:

( , , : , , ) =

( , , ) + ( , , ) + ( , , ) (10)

Term S (simple term) is defined as:

= ( ) + (  )  + ( )

= ( ) + ( ) + ( + )
(11)

where:

= ( ) + (  )  + ( )

= ( ) + ( ) + ( + )
(12)

And:

( , , ) = (  ,  , +  ) (13)

Term N that is known as non-oscillatory near field term 
is defined as [19]:

( ) =
2 1

2
Imexp( ) ( ) (14)

And:

= (1 ) + + | | (1 ) (15)

E1(A) is the well known exponential integral which can 
be expressed as:

( ) =
( )

+ (16)

Finally, the term W which is oscillatory far field term (or 
somewhere is known as wave term) represents the system 
of Kelvin waves trailing behind the singular point, as is 
indicated explicitly by the Heaviside unit step function and 
is expressed as:

( ) = ( 4 ) ( ) exp (1 + )

+ ( + ) 1 + (17)

Numerical evaluation of the source potential thus involves 
three basic tasks corresponding to the evaluation of the simple 
singularity potential, the non-oscillatory near-field potential, 
and the wave potential. Two distinct numerical tasks must 
be considered for evaluating each of these potential parts. 
The first task is numerical evaluation of the main terms and 
their gradients, and the second is numerical integration of 
them over a flat triangle T.

I) SIMPLE TERM:

For evaluating the gradient of simple term it can be used 
the following relation:

1
=

.

| |
(18)

When the singular point is on the field element this term 
vanishes because it uses flat element and in R and n will be 
perpendicular to each other. For integrating this integrand 
over a flat element we can use simple Gauss method.
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Fig. 2. Panel definition sketch

It is well known that the integration of simple term can 
be evaluated analytically. This integral over a flat triangular 
panel may be expressed in the form:

1
 

= ln + ln + ln

+ (tan + tan + tan )
(19)

where the terms dij, ρij, tjj and d are now defined:

=
+ (20)

that sij is the length of the side of the triangle T between the 
vertices = ( + )/2 . and = ( + )/2 . , as indicated in Fig. 2, and is defines as:

= + (21)

where ri representing the distance between the calculation 
point = ( + )/2 . and the vertex = ( + )/2 . of T, as shown in Fig. 2. The terms

= ( + )/2 . in equation (19) are defined as:

= ( + )/2 . (22)

And = ( + )/2 .  is the unit vector in the plane of T normal to 
the side of T between the  vertices = ( + )/2 . and = ( + )/2 . and pointing 
outside T, as indicated in Fig. 2. We then have:

= ×   (23)

where = ×    is the unit vector normal to T oriented as in 
Fig. 2; specifically, the vertices of the panel are numbered 
counterclockwise when the panel is viewed in the direction 
of the normal vector = ×   . 

It can be verified that | = ( + )/2 .| is the distance from the 
projection of the calculation point = ( + )/2 .onto the plane of T to 

the side of T between the vertices = ( + )/2 . and = ( + )/2 ., as shown in Fig. 2. 
The term d in eq. (19) is defined by:

= 2 . (24)

Where =
+ +

3
 is the centroid of T given by:

=
+ +

3
(25)

It can be seen that d is equal to twice the distance between 
= ( + )/2 .and the plane of T, as indicated in Fig. 2. Finally, the terms  

=
2

+
in (19) are defined as:

=
2

+
(26)

In the particular case when the calculation point = ( + )/2 . is 
in the plane of the triangle T, we have d = 0 and eq. (19) 
simplifies accordingly. If = ( + )/2 . lies on one of the three sides of 
T, say on the side between the vertices = ( + )/2 . and = ( + )/2 ., we have 
and the contribution of the side ij in eq. (19) vanishes. If the 
calculation point = ( + )/2 . is at one of the three vertices of T, say at 

= ( + )/2 ., we have both dij =dik = 0, and the contributions of the two 
sides ij and ki in (19) vanish.

The foregoing exact analytic expressions for the simple 
term integral only need to be used for calculation points = ( + )/2 . in 
the vicinity of the triangle T. Indeed, at large and intermediate 
distances from T the approximations can be computationally 
more efficient. 

II) OSCILLATORY NEAR FIELD TERM:

Calculating this term is considered in Newman [2] 
and Telste and Noblesse [5]. The latter study presents 
a computationally efficient method for evaluating the function 
N(X), using table interpolation together with two term series 
representations for small and large values of R.

The function N(X) could be defined as the following 
alternative integrals: 

( ) =
2 1

2
Imexp( ) ( ) =

2 1

2
1

+ | |

+ [exp( ) ( )

+ ln( ) + ]

(27)

Where E1(A) is the exponential integration and was 
explained before and 

( ) =
2 1

2
Imexp( ) ( ) =

2 1

2
1

+ | |

+ [exp( ) ( )

+ ln( ) + ] = 0.577 is Euler’s constant. The 
calculation domain is –∝ < X, Y < ∝ and –∝ < Z < 0.

The behavior of the function N(X) in the limits R → ∝ and 
R → 0 is given in Telste and Noblesse [5] as:
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2N~
1

R
+

C 1 (1 + C)
X
R

R

 as R     C = 1/1
Z

R

(28)

And

2 ~1
+ | |

+
| |

2
ln[( + | |)/4 ]

+
| |

4
2 1

1
3

( )

( + | |)

3
+ | |

+
2

3
1

+ | |
      0

(29)

The transformation (X, Y, Z) → (ρ, α, β) defined below 
maps the semi-infinite space into the unit cube.

=
1 +

=
| |

| | + +

  =
+

(30)

The function N (́ρ, α, β) is defines as + N (́ρ, α, β) = (1 + R)
N(ρ, α, β) and now we can use a simple and computationally 
efficient method for approximating the function N´ consists in 
using table interpolation based on values of the function N´ at 
equally-spaced values of the transformed coordinates ρ, α, β. 
A simple and computationally efficient interpolation formula 
is linear interpolation in each of the three independent 
variables ρ, α, β. More precisely, let the values of the function 
N (́ρ, α, β) be given at equally spaced values:

= 0, , … , , , … , = 1

= 0, , … , , , … , = 1

= 0, , … , , , … , = 1 (31)

of the coordinates ρ, α, β with 

= =
1

1
      1 1

= =
1

1
    1 1

= =
1

1
   1 1

(32)

The intervals, [pi, pi+1] and corresponding to any point 
(X,  Y,  Z) can be determined directly (that is, without 
performing a table search) from eq. (30) and the following 
formulas:

= 1 + Int 1 ,

= 1 + Int[ ( 1)],

= 1 + Int 1
(33)

where Int[x] is the largest integer less than or equal to x. 
Linear interpolation of the function N (́ρ, α, β) is defined by:

 ( , , ) = , , + , ,

+ (1 ) , ,

+ , ,

+(1 ) , , + , ,

+ (1 ) , , + , ,

(34)

where, μ, v and  ( , , ) = , , + , ,

+ (1 ) , ,

+ , ,

+(1 ) , , + , ,

+ (1 ) , , + , ,

 are given by:

= 1 Int 1 ,
= ( 1) Int[ ( 1)],

= 1 Int 1 ,
= 1

(35)

The non-oscillatory term N is now computed, and a seven-
point Gauss method (which will be explained below) is used 
for integration on the triangular panels. 

(a)

(b)
Fig.3. (a) Definition sketch for space integration. (b) Division of a triangular 

panel into four triangular panels

For integration of this non-oscillatory term over these 
triangular panels, the following criterion is defined: =   
Where M is the collocation point (field point) and M´ is the 
center of gravity of the panel where N has to be integrated 
(Figure 3(a)), and dmax corresponds to the largest side of the 
panel. Three cases have been considered:
•	 If ρ0 > 2, a seven-point Gauss integration method is 

performed over the triangular panel;
•	 If 1 < ρ0 < 2, the triangular panel is divided into four 

triangular panels following Figure 3(b); a seven-point 
Gauss integration method is then performed over the new 
panels;

•	 If ρ0 < 1 the triangular panel is also divided into four new 
triangular panels and new criteria on: =  for the 
four values of subscript i are applied:

•	 If > 1,, integration is done by the seven-point method;
•	 If < 1,, the panel is divided again into four new panels 
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and on each new panel integration is done by the seven-
point method.
The seven-point rule of degree 5 is given by ([19]):

.
 

=

40
  (9 ) +

155 15 ( + + )

30

+
155 + 15 ( + + )

30

(36)

where N0, Ni´ and Ní  ́represent the amount of function N 
between the field point and the points x0, xí and xí  ́respectively 
of T defined as:

=
+ +

3
,

=
6 15

7
+

15 + 1

7
,

=
6 + 15

7

15 1

7
(37)

III) OSCILLATORY FAR FIELD TERM:

This term can be expanded as:

( ) = ( 4 ) ( ) exp (1 + )

+ ( + ) 1 +
(38)

where Im denotes for the imaginary part. By defining 
the function ( , ) = exp[ + ( + ) ]   with 
= 1 + . This term and its gradient can be written as:

( ) = ( ) {H(X, t)} ,

( ) = [ ( , )] ,

( ) = [ ( , )] ,

( ) = [ ( , )]

(39)

Numerical integration of eq. (39) is troublesome due to 
the oscillatory behavior of the integrands increasing as Z 
decreases.

Boundary integration is performed analytically to compute 
the far-field velocity potential. The method has been developed 
in Hendrix and Noblesse [6] to compute symmetrical flows. 
Below it is provided formulas for evaluating the integrals on 
W and its gradient, which are obtained without taking into 
account any flow symmetry, and are therefore valid for lifting 
flows. In fact the 2 main objects that should be computed are:

= = { ( , )}
  

= =
 

( , )
 

+ ( , )
 

(40)

The integral 

= = { ( , )}
  

= =
 

( , )
 

+ ( , )
 

 (where H is given earlier) can be 
computed analytically, following Hendrix & Noblesse [6]. 
For a triangular panel j (with area ΔSj) defined by its nodes 
X1́,  X2́, X3́  and  and for the flow observation point given by 
X, we obtain:

( , )
 

= exp( ) =
2 

.

exp(  ) – exp( )
 –

exp( ) exp( ) (41)

Where:  = + ( + )  

It must be kept in mind that this oscillatory part of Green’s 
function is present only if  and this condition must be taken 
into account in the computations

Thus, the previous integrals are single ones over t. For 
a given collocation point, only one integration on W has 
to be computed, integration over the total body area being 
performed analytically, instead of computing a single integral 
over t a number of times equal to the number of panels 
multiplied by the number of Gauss points on the panel in 
the method developed in the previous section. Concerning 
the integral over the gradient, for one collocation point, it has 
to be computed one integral over the panel area instead of as 
many integrals as the number of Gauss points. Numerical 
detail calculations of the all integrals presented in this paper 
can be found in [25-26].

NUMERICAL RESULTS AND VALIDATION

I. TWO-DIMENSIONAL CYLINDER EXPOSED TO 
A UNIFORM FLOW:

In this section, the results are presented for a 2D cylinder 
that are exposed to a uniform flow & then compare them 
with the exact solutions. ( is the number of elements that 
are applied for discretizing the boundary and  is the cylinder 
radius). In the tables 1 and 2 the value of velocity potential 
at nodal points for 10 and 20 elements and in constant and 
linear elements are shown. 
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Table 1. The values of velocity potential at given nodal points of a 2D cylinder-
constant element 

 (a: for (n=10) and b: for (n=20)) 
(a)

x/a Calculated Analytic Relative Error
0.904508 1.780076 1.809017 0.015998
0.559017 1.100148 1.118034 0.015998
5.55E-17 2.54E-11 1.11E-16 ------

-0.559020 -1.100150 -1.118030 0.015992
-0.904510 -1.780080 -1.809020 0.015998
-0.904510 -1.780080 -1.809020 0.015998
-0.559020 -1.100150 -1.118030 0.015992
-1.67E-16 2.54E-11 -3.33E-16 -------
0.559017 1.100148 1.118034 0.015998
0.904508 1.780076 1.809017 0.015998

(b)

x/a Calculated Analytic Relative Error
0.975528 1.942999 1.951057 0.004130
0.880037 1.752805 1.760074 0.004130
0.698401 1.391034 1.396802 0.004129
0.448401 0.893099 0.896802 0.004129
0.154508 0.307741 0.309017 0.004129
-0.154510 -0.307740 -0.309020 0.004142
-0.448400 -0.893100 -0.896800 0.004126
-0.698400 -1.391030 -1.396800 0.004131
-0.880040 -1.752800 -1.760070 0.004131
-0.975530 -1.943000 -1.951060 0.004131
-0.975530 -1.943000 -1.951060 0.004131
-0.880040 -1.752800 -1.760070 0.004131
-0.698400 -1.391030 -1.396800 0.004131
-0.448400 -0.893100 -0.896800 0.004126
-0.154510 -0.307740 -0.309020 0.004142
0.154508 0.307741 0.309017 0.004129
0.448401 0.893099 0.896802 0.004129
0.698401 1.391034 1.396802 0.004129
0.880037 1.752805 1.760074 0.004130
0.975528 1.942999 1.951057 0.004130

Table 2. The values of velocity potential at given nodal points of a 2D cylinder-
linear elements 

(a: for (n=10) and b: for (n=20))
(a)

x/a Calculated Analytical Relative Error
1.0000000000 2.0000000911 2.0000000000 0.0000000455

0.8090169944 1.6180340798 1.6180338987 0.0000001119

0.3090169944 0.6180340798 0.6180339887 0.0000001474

-0.3090169944 -0.6180338977 -0.6180339887 0.0000001472

-0.8090169944 -1.6180338977 -1.6180339887 0.0000000562

-1.0000000000 -1.9999999089 -2.0000000000 0.0000000455

-0.8090169944 -1.6180338977 -1.6180339887 0.0000000562

-0.3090169944 -0.6180338977 -0.6180339887 0.0000001472

0.3090169944 0.6180340798 0.6180339887 0.0000001474

0.8090169944 1.6180347980 1.6180339887 0.0000005002
(b)

x/a Calculated Analytical Relative Error
1.0000000000 2.0000001392 2.0000000000 0.0000000696
0.9510565163 1.9021131718 1.9021130326 0.0000000732
0.8090169944 1.6180341279 1.6183398870 0.0001889338
0.5877852523 1.1755706438 1.1755705046 0.0000001184

x/a Calculated Analytical Relative Error
0.3090169944 0.6180341279 0.6180339887 0.0000002252
0.0000000000 0.0000001392 0.0000000000 --------
-0.3090169944 -0.6180338496 -0.6180339887 0.0000002251
-0.5877852523 -1.1755703654 -1.1755705046 0.0000001184
-0.8090169944 -1.6180338496 -1.6180339887 0.0000000860
-0.9510565163 -1.9021128935 -1.9021130326 0.0000000731
-1.0000000000 -1.9999998609 -2.0000000000 0.0000000695
-0.9510565163 -1.9021128935 -1.9021130326 0.0000000731
-0.8090169944 -1.6180338496 -1.6180339887 0.0000000860
-0.5877852523 -1.1755703654 -1.1755705046 0.0000001184
-0.3090169944 -0.6180338496 -0.6180339887 0.0000002251
0.0000000000 0.0000001392 0.0000000000 --------
0.3090169944 0.6180341279 0.6180339887 0.0000002252
0.5877852523 1.1755706438 1.1755705046 0.0000001184
0.8090169944 1.6180341279 1.6183398870 0.0001889338
0.9510565163 1.9021131718 1.9021130326 0.0000000732

Fig. 4. Schematic of a moving submerged source

II. MOTION OF A SUBMERGED SOURCE IN DEEP 
WATER:

The first step in evaluation and investigation of free surface 
waves is to test the accuracy of green function of the source 
which we want to use. So, in the first part the free surface 
waves due to motion of a submerged source is shown and 
is investigated which show a good agreement with other 
literature results. In figure 4 the schematic of the motion of 
a moving submerged source is shown.

In figure 5 wave pattern and contour of a submerged source 
in depth 2m and with velocity 1m/s is shown. The transverse 
and divergent waves are apparent in this pattern.
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Fig. 5. Wave pattern and contour of a submerged source in depth 2m and with 
velocity 1m/s (Fn=0.22)

In figure 6 the wave pattern and contour of previous 
situation with 300 and 1200 free surface elements are shown 
and as could be seen, both results are the same and this means 
that the results are independent of the number of elements.

(a)

(b)

(c)
Fig. 6. Wave pattern of a source in Z=-2m and U=1m/s (Fn=0.22), (with (a) 

1200 and with (b) 300 free surface elements) and wave contour with 1200 
element in upper part and 300 elements in lower part of (c)

In Figure 7 the wave profile in various transverse distances 
from source are shown and it could be seen that the wave 
amplitude decreases with increasing transverse distance from 
the source. 

Fig. 7. Wave profile in various transverse distances from source

In figure 8 the wave pattern of 2 parallel moving source is 
shown and compared to the result of Parau, & Vanden [19].

The wave pattern changes with changing Froude number. 
In Figure 9, the wave patterns in different situation are 
shown. As shown in Figure 9 in low Froude numbers the 
transverse wave is dominant part of whole wave pattern but 
with increasing Froude number, the transverse waves are 
vanished and the divergent waves increase and in high Froude 
number, the wave pattern totally changes.
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(a)

(b)
Fig. 8. Wave pattern of 2 moving source (Fn=0.4). (a: from reference [19] 

and b: from the present method)

(a)

(b)

(c)

(d)

(e)
Fig. 9. Wave patterns of submerged source in Z=-3 m with U=1, 2, 3, 4 and 4.5 

in A, B, C, D and E, respectively. (Fn=0.18, 0.36, 0.54, 0.72 and 0.8)
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(a)

(b)
Fig. 10. Wave patterns of a submerged source in Z=-3 m with U=4.5 m/s 

(Fn=0.8). (a: from reference [23] and b: from the present paper)

In Figure 10, the wave pattern in Fn=0.8 is shown and 
compared to the results of Uslu & Bal [20].

III. MOTION OF WIGLEY HULL AND SUBMERGED 
SPHERE AND ELLIPSOID IN DEEP WATER:

Figure 11 shows the wave pattern due to motion of a 
submerged sphere (with radius 1, in depth 2m and velocity 
1 m/s.

(a)

(b)
Fig. 11. Wave pattern of a submerged sphere in Z=-2 m with U=1 m/s, 

(Fn=0.22)

The effect of sphere velocity on the wave profile is shown 
in Figure 12, and it illustrates that wave amplitude increase 
with increasing velocity.

Fig. 12. Effect of sphere velocity on the wave profile

In Figure 13, the wave pattern of a submerged ellipsoid 
with large to small diameter ratio 4 in depth 2 m and velocity 
3 m/s are shown.
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Fig. 13. Wave pattern of a submerged ellipsoid in Z=-2 m with U=3 m/s, 
(Fn=0.47)

Figure 14 shows the effect of submergence depth over the 
wave profile. It depicts that with increasing submergence 
depth, the wave amplitude decrease and as could be seen 
from Z=-6m, approximately it doesn’t create any wave on free 
surface. It means that in depth of 6 meter and below, we can 
analyze the motion of this ellipsoid without considering the 
free surface effect and we can use just term  for green function.

Fig. 14. Wave profile of a submerged ellipsoid in various depths with U=1m/s

A Wigley hull is recognized with its body equation which 
is = ± 1 1

.
  where B is hull beam, L is body 

length and T is draft. In figure 15, the wave pattern of a Wigley 
hull with ratios L/B=4, B/T=1 and U=2.5 m/s is shown.

Fig. 15. Wave pattern of a Wigley hull with U=2.5 m/s



POLISH MARITIME RESEARCH, No 4/2016 57

Fig. 16. Wave profile of a Wigley hull U=2.5 m/s (Fn=0.25)

The wave profile of a Wigley hull with ratios L/B=10, B/
T=1.6 and U=2.5 m/s is shown in Figure 16, and compared 
to experimental data and results of by Ghassemi et al. [16], 
that shows good agreement between them.

CONCLUSIONS

In this paper, the numerical evaluation of the hydrodynamic 
characteristics of submerged and surface piercing moving 
bodies are presented. In results for 2D cylinder, more accuracy 
of linear elements in comparison of constant elements is 
apparent. For example the relative error of constant elements 
are in order of  whereas in linear elements are in order of , 
although it also depends on the number of elements. Then 
in 3D bodies, the results obtained by a potential-based panel 
method to calculate free surface waves induced by submerged 
or surface-piercing bodies have been presented. This method 
uses the distribution of Kelvin-Havelock sources for modeling 
the body and this method enabling the flow to be calculated 
without any discretization of the free surface leading to 
automatic satisfaction of the radiation and linearized free-
surface boundary conditions. Computations of the oscillating 
and non-oscillating terms of Green’s function are performed 
by accurate methods. 

This method gives suitable solution and the agreement 
between the results of experimental measurements and the 
present numerical method is satisfactory and indicates the 
robustness and practical worthiness of the proposed method. 
Since the used code was written in MATLAB software, the 
running process took much time so the elements didn’t 
selected too much on the body surface and this is the main 
reason for the little deviation from experimental and literature 
results.

Final practical application of this method can be found the 
relation between of the wave length and body speed, like this 
formula λ = 2πV2/g. For example; if any submerged body is 
moving under free surface generating wave, we can measure 
the wave length and find the body’s speed.

Further works must be devoted to the precision of the 
boundary integrals for source and field points close to the 
free surface, particularly when the Froude number increases. 
Finally, it seems to be interesting to develop in the future 
a second-order method for calculating the nonlinear free 
surface problem with high accuracy.
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