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ABSTRACT

The multi-autonomous underwater vehicle (AUV) distributed task allocation model of a contract net, which introduces 
an equilibrium coefficient, has been established to solve the multi-AUV distributed task allocation problem. A differential 
evolution quantum artificial bee colony (DEQABC) optimization algorithm is proposed to solve the multi-AUV 
optimal task allocation scheme. The algorithm is based on the quantum artificial bee colony algorithm, and it takes 
advantage of the characteristics of the differential evolution algorithm. This algorithm can remember the individual 
optimal solution in the population evolution and internal information sharing in groups and obtain the optimal 
solution through competition and cooperation among individuals in a population. Finally, a simulation experiment 
was performed to evaluate the distributed task allocation performance of the differential evolution quantum bee 
colony optimization algorithm. The simulation results demonstrate that the DEQABC algorithm converges faster than 
the QABC and ABC algorithms in terms of both iterations and running time. The DEQABC algorithm can effectively 
improve AUV distributed multi-tasking performance.
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INTRODUCTION

Currently, research on underwater vehicle AUVs focuses 
on two dimensions: task allocation modeling and algorithm 
optimization. In recent years, to avoid the multi-robot 
centralized solution of the large calculation load of the 
central node, poor system robustness and other defects, 
scientific researchers worldwide have devised independent 
coordination and control technology for multi underwater 
vehicle AUVs according to the group behavior, which appears 
in biological group interaction mechanisms and reaction 
mechanisms. This effort provides a new method to solve 
the problem of distributed task allocation [1-3]. Distributed 
task allocation offers many advantages, such as strong 

autonomous system scalability, calculation simplicity, and 
the lack of a defined coordination control center. It has no 
prominent hierarchical system feature. This method uses the 
bottom-up data-driven form, which distinguishes it from 
the traditional up-down task-planning model. It represents 
a new direction in the research field of multi underwater 
robot AUV task allocation.

With the rapid development of swarm intelligence 
algorithms, many researchers have simulated insect foraging 
behavior and have introduced a response threshold model to 
assign tasks; other experts have introduced the ant colony 
algorithm to solve the large-scale task allocation problem 
based on the time series [4-6]. Some experts have also 
designed a task model and proposed an improved discrete 
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particle swarm optimization algorithm to solve the problem 
[7,8]. These methods provide a new way to solve the problem 
of allocating tasks among multiple robots. The present paper 
explores AUV mission planning theory for multi-AUV task 
allocation, particularly to study distributed AUV dynamic 
task allocation, which uses the differential evolution quantum 
colony optimization algorithm in the bionic task allocation 
method.

MATERIAL AND METHODS

QUANTUM ARTIFICIAL BEE COLONY OPTIMIZATION 
ALGORITHM

The bee colony optimization algorithm is a type of meta-
heuristic optimization method to imitate the behavior of 
natural bees. Ferrante et al. [9] proposed a self-organization 
model, which was applied to task partitioning. Grozinger 
[10] proposed a self-organizing model, which showed the 
communication in the bee colony through many methods, 
including “swing dance” and odor. This self-organization 
model can complete different tasks in different social classes. 
Karaboga and Bastruk. proposed a meta-heuristic bee 
colony algorithm to solve the maximum-weight problem 
[11, 12]. Tsai et al. [13] introduced an algorithm that imitated 
honeybees using the method of neighborhood search and 
random search for combinatorial optimization and function 
optimization. Karaboga et al. [14] successfully applied the 
colony algorithm to the problem of function extremum 
optimization and systematically introduced the artificial 
bee colony (ABC) model. Civicioglu and Besdok [15] analyzed 
a conceptual comparison of the Cuckoo search, particle swarm 
optimization, differential evolution and artificial bee colony 
algorithms. Loubière et al. [16] proposed a sensitivity analysis 
method for driving the artificial bee colony algorithm’s 
search process, a new approach to random selection in 
neighborhood search. Karaboga and Akay [17] and Ozturk 
et al. [18] proposed an improved clustering criterion artificial 
bee colony algorithm.

In the quantum space, the particle state ( , ) ( , )ih X t X t
t  

is represented by wave function ( , )X t , where H is the 
Hamiltonian operator and h is Planck’s constant. If the particle 
undergoes a one-dimensional potential well movement at the 
center point of Q, the position determined by the stochastic 
equation is 

2
ln(1 )

2
hX Q u
m

, which m is mass of the particle, 
u is the random number distributed on the interval (0, 1) 
uniformity [19].

Thus, we can obtain a formula of the quantum artificial 
bee colony algorithm: 

, , , , ,( 1) ( ) ( ) ( ) ln(1 ( ))i j i j i j i j j i jX t Q t X t X t u t  (1)

In the formula, i is the bee number, j is the dimension, 
,i jX  is the bee optimization position, and  is a constant. 

In addition,

( ) ( ) ( ) (1 ) ( ), ,Q t t Q t G ti j j i j j j  (2)

In the formula, j  is the random number distributed 
on the interval (0, 1) uniformity, , ( )i jQ t is the best current 
position of an individual bee, and ( )jG t  is the best estimate 
of the current position of all bees.

The best estimate of the position of the i-th bee is

( )               ( ) ( 1)
( )

( 1)            ( ) ( 1)
i i i

i

i i i

X t f X t f Q t
Q t

Q t f X t f Q t
 (3)

The best estimate of the global position is determined by 

1
arg min  ( )ii m

g f Q t and ( ) ( )gG t Q t .

OPTIMIZATION ALGORITHM OF DIFFERENTIAL 
EVOLUTION OF QUANTUM COLONY

The differential evolution algorithm incorporates the 
individual optimal solution in the group evolution and shares 
the internal information groups 0 0 0

1 2(0) , , , NPX x x x , 
through the cooperation and competition among individuals 
within the group to achieve the optimal solution. Assume that 
population size is NP , when the population evolves to the m  
generation, the population is ( )X m , and the dimension of the 
solution space is K . In the initial population, the individual 
solution of I is 0 0 0 0

,1 ,2 ,, , ,i i i i kx x x x . The individual 
components are as follows:

0
, ,min ,max ,min( )i j j j jx x rand x x (4)

where ,maxjx  is the upper bound of the solution space and 
,minjx  is the lower bound of the solution space. The differential 

evolution algorithm has three types of operation: mutation, 
crossover and selection [20-22].

The use of fewer colony algorithm parameter settings 
make the algorithm easier to obtain and allows effective 
solution of complex optimization problems but also risks 
falling into a local optimum. Differential evolution quantum 
approaches must incorporate many operations, such as 
variation, crossover and selection. The optimal solution 
is obtained by iterating. Many problems can arise during 
the optimization process, such as slower convergence speed 
and premature solution. Akay B et al. proposed a differential 
evolution algorithm with a search strategy for an artificial 
bee colony [23]. The differential evolution quantum 
artificial bee colony (DEQABC) algorithm incorporates the 
artificial bee colony search strategy into the iteration process, 
which can allow it to escape a local optimum and avoid the 
premature phenomenon [24,25].
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( ),ij ij ij kjv x x x i k (5)

Because of the lack of development of the formula, Ozturk 
C et al. proposed a novel binary version of the artificial bee 
colony algorithm based on genetic operators (GB-ABC) such 
as crossover and swap to solve binary optimization problems 
[26].

( ) ( ),Global
ij ij ij kj j ijv x x x x x i k (6)

Therefore, the differential evolution optimization algorithm 
improves the convergence speed and avoids the prematurity 
phenomenon. The specific steps are as follows:

(1) Initialize: F shrinkage factor, CR cross factor, maxCycle 
maximum iterations.

(2) Initial population: Randomly generate M solutions iX
, ( 1,2, ,i M ).

(3) Execute the program:
While the stop conditions are not satisfied, do
 For i=1 to M, do
  Do mutation, crossover and selection for iX .
   For k=1 to K, do
    Use formulas (1) and (2) to search the candidate solutions  
    near iZ .
     If ( ) ( )i if Z f X
     i iX Z
    End if
   End for
  End for
 End while

RESULTS

MULTI-AUV DISTRIBUTED TASK ALLOCATION OF 
THE CONTRACT NET WITH THE INTRODUCED 
BALANCE COEFFICIENT 

To enable multiple AUVs to quickly complete the task and 
achieve global optimization, first, the task is distributed to 
the entire AUV team with the smallest cost using the contract 
net to ensure the global optimization of task implementation. 
Then, the balance coefficient is used to make the entire AUV 
team distribute and achieve the tasks in the shortest time.

The balanced coefficient R
eqB  is introduced in the contract 

net distributed robot task allocation. Each robot uses its 
cost function to count the workload: the workload is the 
cost of robot R in the entire process of the work. Each robot 
broadcasts its workload to the entire team and calculate its

eqB . The formula of the balance coefficient for robot R is 
as follows:

( )R
eq

wa R waB
wa

(7)

where wa  is the average workload of all robots in the team.
R
eqB <0: robot R has a lighter workload than the other robots;
R
eqB >0: robot R has a heavier workload than the other robots;
R
eqB > 1R

eqB 0: robot R has a heavier workload than robot R1.
In the contract net, the robot can take the task at the 

minimum cost, and the workload to be obtained should not 
be excessive. Thus, the task can be estimated from the balance 
coefficient eqB . The formula of the task is estimated by robot 
R as follows:

'
1 1 1( ) ( ) ( )R R R R

eqrt T rt T B rt T (8)

The task can be estimated using the balance coefficient eqB  
of robot R. The following effects can be obtained:

(1) A robot with a larger workload cannot easily obtain new 
tasks, and its tasks are more likely to be reassigned because 
its task utility is low.

(2) A robot with a smaller workload easily obtains new 
tasks and does not easily give up its task because its task 
utility is high.

CONTRACT NET TASK ALLOCATION MODEL BASED 
ON DIFFERENTIAL EVOLUTION QUANTUM BEE 
COLONY ALGORITHM 

The managers are denoted by AUV  in the distributed 
contract net. They are responsible for managing the task, and 
the other AUVi  are responsible for bidding the task. The task 
allocation process includes four steps: task bidding, bid, bid 
winning and task execution based on the contract net. The 
contract net task allocation model based on the differential 
evolution quantum bee colony algorithm is as follows:

A s s u m e  t h a t  t h e r e  a r e VN  AU Vs , 
1 2, , ,

MNTask Task Task Task , the number of task targets 
is MN , 1 2, , ,

VNV V V V , the number of AUVs is VN , 
1 2, , ,

QNMenace Menace Menace Menace , and the number 
of threat sources is QN . The AUVs, task targets, and threat 
sources can include many types. If the same type of task 
is performed by different AUVs, the implementation effect 
is different. Assuming that the task set assigned to iAUV  is 

1 2, , , in
i i i iT Task Task Task , the multi-AUV distributed task 

allocation problem can be translated as follows: Assign the 
existing tasks to multiple AUVs in the shortest possible time, 
i.e., 

1

VN

i
i

T Task ; each AUV has only one task, i.e., , 1, , Vi j N
, i j  and i jT T .If the maximum number of tasks 
executed by the multi-AUV system is less than the number 
of tasks that should be allocated, the assignment can be 
optimized to improve the overall efficiency of the multi-AUV 
task allocation system according to the following objectives. 

Objective one: To maximize the overall effectiveness 

1
( )

VN

i i
i

T  of the AUV after finishing the task, ( )i iT  is the 
performance after the task set iT  is completed by iV .

Objective two: To minimize the required time 
max ( )i V i iTime T  of the task to be completed by the AUV, 

( )i iTime T  is the time at which the task set iT  is finished by iV .
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Objective three: To balance the task load of each AUV, 
1

( )
VN

i i
i

Tload T Tload  is minimized, where ( )i iTload T  is the task 
load of iV , Tload  is the average task load for each AUV.

DISCUSSION

EXPERIMENTAL PARAMETER ASSIGNMENT 

To evaluate the performance of the distributed task 
allocation model based on the differential evolution quantum 
bee colony algorithm, the study included the corresponding 
simulation experiment. The conditions of the simulation 
experiment are as follows:

A set of thirty task items to be assigned is selected. The 
thirty tasks can be divided into three categories: 1T  , 2T ,and 

3T . 1AUV , 2AUV ,and 3AUV are involved in the bidding 
of the AUVs and all tasks of the bid. The bid value of the 
completed task, trust and initial ability are shown in Table 1. 
The influence factors of the AUV load, ability and trust degree 
are 0.3, 0.4 and 0.2, respectively, in the bidding strategies 
of the contract net task allocation based on the differential 
evolution quantum bee colony algorithm.
Tab. 1. Initial value of the completed task, trust and ability.

T1 T2 T3

Bidding 
value Trust degree Ability Bidding value Trust 

degree Ability Bidding 
value

Trust
degree Ability

3 0.6 0.8 2 0.5 0.6 2 0.8 0.7

4 0.8 0.6 2 0.9 0.8 3 0.9 0.6

5 0.9 0.7 3 0.7 0.7 4 0.6 0.8

The simulation experiment has 2 objectives. When the 
bidding and tendering stage are identical, the first objective 
is to test and compare the contract net model based on the 
differential evolution quantum bee colony algorithm and 
the contract net traditional model. The second objective is to 
compare the performance in four aspects: efficiency of task 
allocation, average AUV load, number of bid AUV allocated 
tasks, and proportion relation of the corresponding type of 
task ability.

EXPERIMENTAL VERIFICATION 

After the experiment, the simulation results are as follows. 
Figure 1 shows the average load of AUV1, AUV2 and AUV3 
in the contract net traditional model AUV. Figure 2 shows 
the reduced proportion (%) when AUV1, AUV2 and AUV3 
execute tasks in the contract net traditional model.

Fig. 1. Average Load of AUV1, AUV2 and AUV3 in the Contract Net 
Traditional Model AUV.

Fig. 2. Reduced Proportion (%) of AUV1, AUV2 and AUV3 when they 
Executed Tasks in the Traditional Contract Net Model.
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Figure 3 shows the average load of the AUVs in the contract 
net model based on the differential evolution quantum bee 
colony algorithm. Figure 4 shows the reduced proportion 
(%) of execution time in the contract net model with the 
introduced balance coefficient based on the differential 
evolution quantum bee colony algorithm.

Fig. 3. Average Load of AUV1, AUV2 and AUV3 in the Contract Net Improved 
Model AUV.

Fig. 4. Reduced Proportion (%) of AUV1, AUV2 and AUV3 Tasks in the 
Contract Net Improved Model.

Comparing the front and back images, we observe that the 
traditional contract net does not consider the load balance 
of the bidding AUV, which causes a large load difference for 
the bidding AUV. The improved contract net model satisfies 
the requirement of load balance because the proportions 
of load and task execution time of three bidding AUVs are 
basically equivalent.

Figure 5 shows that the comparison of the executive 
entirety effectiveness of multiple AUVs in the distributed 
task allocation experiment in the traditional contract net 

model and the contract net model with the introduced balance 
coefficient based on the differential evolution quantum bee 
colony algorithm.

Fig. 5. Comparison of the Executive Entirety Effectiveness of the Multi-AUV 
Distributed Task Allocation.

Figure 6 shows the comparison of the convergence 
performance of the ABC, QABC, and DEQABC algorithms 
in the process of multi-AUV distributed task allocation.

Fig. 6. Comparison of the Convergence Performance of the ABC, QABC, 
and DEQABC Algorithms.

Figure 7 and Figure 8 show the comparison of the number 
of iterations and running time when the ABC, QABC, and 
DEQABC algorithms are used to solve 10 task allocation 
cases to obtain the optimal solution.
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Fig. 7. Comparison of the Number of Iterations for the ABC, QABC, and 
DEQABC Algorithms.

Fig. 8. Comparison of the Running Time for the ABC, QABC, and DEQABC 
Algorithms.

CONCLUSIONS

In this paper, we propose a distributed task allocation 
model based on the differential evolution quantum bee 
colony algorithm to allow more rapid task allocation for 
a greater number of AUVs and achieve global optimization 
in the multi-AUV distributed task allocation. The balance 
coefficient is introduced to distribute the robot task allocation 
of the traditional contract net. The unbalanced load and 
other defects are improved in the multi-AUV distributed 
task allocation of the traditional contract net. The differential 
evolution quantum bee colony algorithm is applied to the 
process of multi-AUV dynamic distributed task allocation. 

The simulation experiment verifies that the quantum bee 
colony based on differential evolution can avoid falling 
into local optima; shorten the convergence time; reduce 
the number of iterations; enhance the global, dynamic and 
adaptive capability of the bee colony algorithm; and effectively 
improve the overall performance of distributed task allocation 
for multiple AUVs.
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