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ABSTRACT

Using the yellowfin tuna (Thunnusalbacares,YFT)longline fishing catch data in the open South China Sea (SCS) 
provided by WCPFC, the optimum interpolation sea surface temperature (OISST) from CPC/NOAA and multi-satellites 
altimetric monthly averaged product sea surface height (SSH) released by CNES, eight alternative options based on 
Bayes classifier were made in this paper according to different strategies on the choice of environment factors and the 
levels of fishing zones to classify the YFT fishing ground in the open SCS. The classification results were compared with 
the actual ones for validation and analyzed to know how different plans impact on classification results and precision. 
The results of validation showed that the precision of the eight options were 71.4%, 75%, 70.8%, 74.4%, 66.7%, 68.5%, 
57.7% and 63.7% in sequence, the first to sixth among them above 65% would meet the practical application needs 
basically. The alternatives which use SST and SSH simultaneously as the environmental factors have higher precision 
than which only use single SST environmental factor, and the consideration of adding SSH can improve the model 
precision to a certain extent. The options which use CPUE’s mean ± standard deviation as threshold have higher 
precision than which use CPUE’s 33.3%-quantile and 66.7%-quantile as the threshold
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INTRODUCTION

Yellowfin tuna (Thunnusalbacares) is one of the economic 
important targets harvested primarily by means of the 
longline catch, generally accounting for a large proportion 
of the gross catch in the South China Sea tuna fisheries [1,2,3]. 
So far, the studies on yellowfin tuna in the South China Sea 
mainly concentrated on biology such as basic biology [4], 
population genetic structure [5], etc. Yet hardly any specific 
researches have been conducted on yellowfin tuna fishing 
grounds forecasting in the South China Sea.

Statistical methods are widely used in tuna fishing 
ground forecasting in other sea areas that need sufficient 
historical data to analyze a relationship between the oceanic 
environment and the fish catch and then to forecast the future 

condition of the fishing ground with the relationship, such 
as linear regression model (LRM) [6], time series analysis 
[7], spatial overlay analysis [8], geostatisticalanalysis [9], 
Bayes probability model[10,11,12,13], etc. Among them, the 
Bayes probability model has a solid theoretical foundation 
of Mathematics. It uses the historical statistical data of fish 
catch and the specific environmental factors to figure out 
the prior probability and conditional probability, and then 
quantitatively evaluates the category of the fishing grounds 
it forecasted by the posterior probability. The forecast results 
not only reflect the fishing experiences of the fishermen 
but also consider the oceanic environmental influence on 
fishing grounds. However, due to the variability, complexity 
of oceanic environment and the instability of spatial-temporal 
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distribution of fishery resources, a single forecast model build 
plan can not completely fit with any sea areas and any fish 
species, the differences of the interior parameter setting 
such as the choice of the environmental factors and the 
classification strategy of the fish zones in the Bayes model 
must bring different forecast results.

In this study, the oceanic environmental data from satellite 
remote sensing, and the historical fish catch data were used 
to build eight alternative models based on Bayesclassifier 
model to forecast the yellowfin tuna fishing groundin the 
South China Sea in 2011. The classification results ofthe eight 
options were compared with the actual ones for validation 
and how different the options impact on classification results 
and precision were analyzed.

MATERIALS AND METHODS

FISHERY AND ENVIRONMENTAL DATA

The fishery data provided by the Western Central Pacific 
Fisheries Commission (WCPFC) at a 5°×5° spatial resolution 
and a monthly time resolution include operation time (year/
month), position (latitude/longitude), and fish catch statistical 
information of each fish species (hooks, catches, numbers). 
The latitude and longitude recorded in the data represent 
the latitude and longitude of the southwest corner of a 5° 
grid. The study area covers the South China Sea and adjacent 
waters (105°E-125°E and 0°-25°N) and the data within the 
area were extracted.

Monthly sea surface temperature (SST) data were compiled 
from the optimally-interpolated (OI) at 1° spatial resolution, 
generated by the Climate Prediction Center(CPC), NOAA. 
Monthly multi-satellites (Topex/Poseidon, JASON-1, Jason-
2, Envisat, ERS-1, ERS-2and Cryosat-2) merged sea surface 
height (SSH) data at 0.25° spatial resolution was downloaded 
from the Satellite Oceanic Data Center, the Centre National 
d’EtudesSpatiales(CNES). There was a difference among the 
environmental data and fishery data described above, so an 
operation of the environmental data resampling to a 5°×5° 
spatial resolution for matching up with the fishery data was 
conducted. Here the historical catch data from 2000 to 2010 
were thrown into build models to forecast the potential fishing 
ground distributions in the year of 2011.And we conducted 
a validation for the forecast results by the real ones in 2011.

METHODS

Compute of catch per unit of effort

Catch per unit of effort (CPUE) is a value that can be 
used to represent fishery resource abundance in a statistical 
unit[14]. Here it was the quantitative index of fishing grounds. 
The equation of CPUE in every 5°×5° fishing zone grid was 
as follow:

                           (1)

where, CPUE(i,j), Nfish(i,j)and Nhook(i,j) are the CPUE, fish catch 
number and fish hook number of the fishing zone grid at the 
i-th longitude and the j-th latitude, respectively.

Forecast model building

Bayes classifier model was used as the model to forecast 
and classify the fishing grounds in the South China Sea. 
There are several practices of scientific literature [11, 12, 13] 
can be referred to for the detail of the model framework 
and here it would not be repeated. In fact, how to choose 
the environmental factors and the classification strategy of 
the fishing zones are the two keys to the model. So, eight 
alternative options were designed according to different 
combinations of the two settings as follows (Fig. 1):

Option 1: use SST only as the environmental factor, take 
its real value as the model parameter and divide fishing zones 
into two classes by the average of the historical CPUEs;

Option 2: use SST and SSH as the environmentalfactors, 
take their first principal component as the model parameter 
and divide fishing zones into two classes by the average of 
the historical CPUEs;

Option 3: use SST only as the environmental factor like 
the option 1 and divide fishing zones into two classes by the 
median of the historical CPUEs;

Option 4: use SST and SSH as the environmental factorslike 
the option 2 and divide fishing zones into two classes by the 
median of the historical CPUEs;

Option 5: use SST only as the environmental factor like 
the option 1 and divide fishing zones into three classes by 
the average±standard deviation of the historical CPUEs;

Option 6: use SST and SSH as the environmental factors 
like the option 2 and divide fishing zones into three classes 
by the average±standard deviation of the historical CPUEs;

Option 7: use SST only as the environmental factor like 
the option 1 and divide fishing zones into three classes by 
the 33.3%-quantile and 66.7%-quantile of the historical CPUEs;

Option 8: use SST and SSH as the environmental factorslike 
the option 2 and divide fishing zones into three classes by the 
33.3%-quantile and 66.7%-quantile of the historical CPUEs.

Principal component analysis

Principal component analysis (PCA) is a statistical 
procedure that uses an orthogonal transformation to con-
vert a set of possibly correlated variables into a set of 
values of linearly uncorrelated variables called principal 
components [16]. Bayes classifier model must be built 
based on anassumption that the every environmental fac-
tor independently impacts on thefishing ground. If there 
are a relationship among the factors, the classification ac-
curacy of the model would be effected[15]. Therefore, it is 
necessary to extract the first principal component of SST 
and SSH before the option 2, 4, 6 and 8 were executed. 
The specific steps were as follows: 
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(1) Standardize the variables that need to be analyzed to 
solve the problem of different kinds of data. Here z-score 
standardization was adopted and the equation was as follow:

                                    (2)

where, yiwas the standardized new sequence, and sare 
the average and the standard deviation of the sequence , 
respectively;
(2) Compute correlation matrix R with the new sequence yi ;
(3) Solve the characteristic equation , obtain the 
eigenvalue λi,the eigenvectorliand then sort λiin descending 
order;
(4) Compute the contribution rates of the principal 
components and the accumulative contribution rates;
(5) Obtain the principal components.
The steps listed above have been realized by programming 
in MATLAB software.

Compute of fishing ground probability

The prior probability of fishing ground was computed 
based on an assumption that the more some kind of fish zone 
appears historically the greater the probability of the kind of 
fish zone is. So the formula was as follow:

                        (3)

Where,hi represents the event that fishing zone was 
defined as the i-th class, P(hi)was the prior probability of the 
situation when hi eventhappens without the consideration of 
environmental condition, Ni was the number of hieventswhich 

happens in the fishing zone, and Ntotal was the total number 
of samplesof the fishing zone historically.

The conditional probability refers to the occurrence 
probability of some kind of environmental condition in a 
situation when the fishing zone was defined as some kind of 
class. So the formula was as follow:

                             (4)

where,  was the occurrence probability of the 
environmental conditione, Ni was the occurrence number of 
the situation whenhievent happens and Mi was the occurrence 
number of the environmental condition e in a situation when 
hi event happens.

Finally, according to the principle of Bayes probability, 
the posterior probability of each fish zone can be calculated 
by the formulas as follow:

                        (5)

The class that the maximum of the posterior of each fish 
zone corresponding can be regard as the forecasted fish zone 
class.

Model validation

The validation of the 8 alternative options was subsequently 
implemented using independent sets of monthlyfishery data 
in 2011. The error matrix was built between the forecasted 
results and actual ones to calculate the generalaccuracy as 
follow:

Fig. 1. Eight alternative options based on Bayes classifier model
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                                    (6)

where, pc was the general accuracy; pii was the number of 
fishing zones which have been correctly classified; n was 
the number of classes and p was the number of total fishing 
zone samples[17].

RESULT

THE RESULTS OF THE EIGHT OPTIONS

In 2011, there were 168 fishing zone samples used for 
classification. By dividing fishing zones into two classes by 
the average of the CPUEs, there were 63 high-CPUEs (37.5%) 
and 105 low-CPUEs (62.5%). By dividing fishing zones into 
two classes by the median of the CPUEs, there were 63 high-
CPUEs (37.5%) and 105 low-CPUEs (62.5%), too. By dividing 
fishing zones into three classes by the average±standard 
deviation of CPUEs, there were 9 high-CPUEs (5.3%), 109 
middle-CPUEs (64.9%) and 50 low-CPUEs (29.8%). By 
dividing fishing zones into three classes the 33.3%-quantile 
and 66.7%-quantile of CPUEs, there were 30 high-CPUEs 
(17.8%), 51 middle-CPUEs (30.4%) and 87 low-CPUEs (51.8%).

The forecast accuracies of the eight alternative options of 
Bayes classifier model was shown in Tab1. The general accuracy 
of the option 1 was at 71.4%, in which high-CPUEs and low-
CPUEs were at 84.1% and 63.8%, respectively. The general 
accuracy of the option 2 was at 75%, in which high-CPUEs and 
low-CPUEs were 90.5% and 65.7%, respectively. The general 
accuracy of the option 3 was at 70.8%, in which high-CPUEs 
and low-CPUEs were 82.5% and 63.8%, respectively. The 
general accuracy of the option 4 was at 74.4%, in which high-
CPUEs and low-CPUEs were 88.9% and 65.7%, respectively. 
The general accuracy of the option 5 was at 66.7%, in which 
high-CPUEs, middle-CPUEs and low-CPUEs were 20%, 
86.2% and 36%, respectively. The general accuracy of the 

option 6 was at 68.5%, in which high-CPUEs, middle-CPUEs 
and low-CPUEs were 20%, 91.7% and 28%, respectively. The 
general accuracy of the option 7 was at 57.7%, in which high-
CPUEs, middle-CPUEs and low-CPUEs were 63.3%, 43.1% 
and 64.4%, respectively. The general accuracy of the option 
8 was at 63.7%, in which high-CPUEs, middle-CPUEs and 
low-CPUEs were 63.3%, 39.2% and 78.2%, respectively. In 
addition, there were 3 samples (accounting for 1.8%) cannot 
be classified by options 1, 3, 5 and 7.

Tab.1 Forecast accuracies of the eight options of Bayes classifier model

Options
High-CPUEs

(Number/Rate)
Middle-CPUEs
(Number/Rate)

Low-CPUEs
(Number/Rate)

Undefined
(Number/Rate)

General
(Number/Rate)

1 53/84.1% - 67/63.8% 3/1.8% 120/71.4%
2 57/90.5% - 69/65.7% - 126/75%
3 52/82.5% - 67/63.8% 3/1.8% 119/70.8%
4 56/88.9% - 69/65.7% - 125/74.4%
5 1/20% 94/86.2% 18/36% 3/1.8% 113/66.7%
6 1/20% 100/91.7% 14/28% - 115/68.5%
7 19/63.3% 22/43.1% 56/64.4% 3/1.8% 97/57.7%
8 19/63.3% 20/39.2% 68/78.2% - 107/63.7%

Fig.2The predicting results of the Option2 of the Bayesian classifier model
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INFORMATION SYSTEM IMPLEMENTATION OF THE 
BAYESIAN CLASSIFIER MODEL BASED ON THE FIRST 
PRINCIPAL COMPONENT OF SST AND SSH

The results from Tab 1 implies that Bayes classifier model 
of Option 2 has the highest general accuracy. So we choose 
the Option 2 as the scheme of marine environment factors’ 
selection and fishing zones’ classification to build the 
forecasting model based on Bayes Classifier rule. And the 
tuna fishing ground forecasting information service system 
for the open South China Sea has been set up to realize the 
model’s computing and share the forecasting result. This 
information system adopts three-tier architecture. And it 
includes four sectors such as data acquisition, fishing ground 
forecasting model, forecasting information publishing 
service and custom interface [18]. The system uses Java as 
the development language coded in Eclipse. The system 
calls the forecasting model implemented by Matlab script to 
computing every fishing zone’s probability of high-CPUE. The 
forecasting results are updated and published by GeoServer, 
an open source server for sharing geospatial data. Fig 2 shows 
the forecasting results of different times in the open South 
China Sea about the every fishing zone’s probability of high-
CPUE using this information system.

DISCUSSION

The optionswere classified as the Group 1, which used SST 
only as the environmental factor and took its real value as 
the model parameter, have favorable general accuracy except 
the option 7. The fishing ground distribution of yellowfin 
tuna is related to SST, which has been studied frequently 
and deeply both at home and abroad [19, 20]. Fan and Zhou, 
etc. used SST remote sensing data to build forecast models 
based on Bayes theory in the Pacific Ocean and the Indian 
Ocean and the returned accuracy is at 65%~70%[11,13]. It 
means that the single environmental factor SST can be used 
as the model forecast parameter. The options 2, 4, 6 and 8, 
which were regarded as the Group 2, used SST and SSH 
as the environmental factors and took their first principal 
component as the model parameter.The Group 2 has higher 
accuracies compared with the Group 1. It explains that the 
factor SSH doesn’t weaken the contribution of SST. It can 
be inferred,the models that added SSH factor can improve 
the general accuracies to a certain extent and the SSH factor 
have a certain influence on the fishing ground distribution 
of yellowfin tuna. The research of Wang et al.[21]shows that 
SSH affected the CPUE distribution of the Central West 
yellowfin tuna fishing grounds significantly. The annual 
CPUE is high in the areas where the SSH values are high 
and it is favorable to conduct fishing operations in the areas. 
The oceanic environmental factors are not independent, and 
there is a certain relationship among various factors[22]. 
Using the first principal component of the two factors instead 
of themselves as input parameters makes the forecast more 
accurate relatively. 

A comparison of the 4 classification strategy has been 
conducted. The results showed that the options dividing 
fishing zones into two classes by the average were more 
accurate than by the median, and the options dividing 
fishing zones into three classes by the average±standard 
deviation were more accurate than by the 33.3%-quantile and 
66.7%-quantile. Actually, to divide fishing zones by the median 
or the 33.3%-quantile and 66.7%-quantile, all were based on 
the assumption that the number of the fishing zones belonging 
to each class historically were equal. However, the assumption 
was inconsistent with the actual situation in the oceanic fishing 
operation. Generally, the fishermen have rich experience so 
that they tend to fish operation in the areas where CPUEs are 
higher. In other words, the CPUE in many years should follow 
the normal distribution or the skew distribution. The accuracies 
of high-CPUEs in options 5 and 6 were only at 20% with the 
number of high-CPUE fishing zones was only 9, which was 
unable to conclude that adopting the average±standard deviation 
could not identify high-CPUE fishing zones accurately.

In addition, the accuracy of forecast models was also 
associated with the time span of historical data. The time span 
of data should not be too long nor too short because the data 
was too old to reflect current real situation by considering the 
changes of the fishing capacity and resources. Certainly, if the 
time span of data was too short, it can lead to insufficient training 
and effect the reliability of classification results. Therefore, 
an assumption that the changes in the population size of the 
yellowfin tuna are little and the fishing operation is on the same 
level of fishing capacity in the South China Sea from 2001 to 
2010 was accepted by this paper. Besides, there may be some 
inter-monthly differences between historical fishing data and 
environmental data. If so, the models could be performed less 
successfully by using constant relationship mode directly. So it is 
necessary to analyze the relationships of each month separately 
under the condition of sufficient data. The effective factor of 
model accuracy are far more than those mentioned above, it is 
a way that we only try our best to improve the accuracy can 
make the model perfect gradually.

CONCLUSION

We have used historical catch data and sea surface 
environmental factors (SST and SSH) to forecast and classify 
the fishing grounds in 2011 of yellowfin tuna in the open 
South China Sea with eight alternative options based on Bayes 
classifier model according to different strategies on the choice 
of environment factor and classification of fishing zones, 
and the forecast results were validated compared with actual 
fishing ground distribution. The results of validation showed 
that the accuracies of the eight options were 71.4%, 75%, 
70.8%, 74.4%, 66.7%, 68.5%, 57.7% and 63.7% in sequence, 
the first to sixth among them above 65% would meet the 
practical application needs basically. The accuracies of options 
7 and 8 under 65% need further improvement in classification 
strategy.
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