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ABSTRACT

Side scan sonar measurement platform, affected by underwater environment and its own motion precision, inevitably 
has posture and motion disturbance, which greatly affects accuracy of geomorphic image formation. It is difficult to 
sensitively and accurately capture these underwater disturbances by relying on auxiliary navigation devices. In this 
paper, we propose a method to invert motion and posture information of the measurement platform by using the 
matching relation between the strip images. The inversion algorithm is the key link in the image mosaic frame of side scan 
sonar, and the acquired motion posture information can effectively improve seabed topography and plotting accuracy 
and stability. In this paper, we first analyze influence of platform motion and posture on side scan sonar mapping, 
and establish the correlation model between motion, posture information and strip image matching information. 
Then, based on the model, a reverse neural network is established. Based on input, output of neural network, design 
of and test data set, a motion posture inversion mechanism based on strip image matching information is established. 
Accuracy and validity of the algorithm are verified by the experimental results.
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INTRODUCTION

Side scan sonar describes submarine topography in the 
form of grids and detects seabed morphology by recording 
and showing submarine backscatter echo of incident sound 
wave. Side scan sonar record captures a series of strip images 
without geographic azimuth information. Many difficulties 
need to be solved to form large-scale, high-precision, high-
resolution submarine landscape images. Image mosaic and 
geocoding can map the measured strip images to specified 
geographic coordinate system, thus synthesizing a whole 
regional geomorphic image. But existing processing means 
have difficulty to effectively eliminate image spots, stripe noise 
caused by noise, marine environment changes, insufficient 
navigation information accuracy, track bending, speed 

nonuniformity, unstable towfish posture as well as cracks 
and local distortion etc., caused by inaccurate image mosaic. 
These interference and distortion problems greatly hinder 
applications of automatic target detection, identification, 
seabed material classification, navigation.

In this context, we carried out research on side scan 
sonar image mosaic processing system, and established 
a new processing framework in order to improve quality of 
side scan sonar mosaic image and computational efficiency 
of corresponding operation. The processing model first 
filters spot noise and stripe noise of strip image obtained 
via side scan sonar. Then, adjacent strip image is matched 
with feature and region similarity metrics algorithm based 
on side scan sonar image characteristics. Relative position 
information of strip image is obtained by matching, so that 
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track of side scan sonar carrier platform is inverted to solve 
the mispairing and mismatch problem. Finally, the matching 
strip image is merged and embedded to obtain the whole 
seabed geomorphology of the detection area.

This paper focuses on inversion of side scan sonar track in 
the whole frame. The random variation of navigational state 
of the carrier platform is the main interference that degrades 
accuracy of mosaic image, also the main source of mispairing 
and mismatch problem of strip image. As side scan sonar runs 
in the underwater environment, it is difficult for auxiliary 
navigation tool to locate it, and its accuracy and sensitivity 
cannot be guaranteed. It is a novel, intuitive and effective 
means to judge the misplaced points, correct the mismatched 
images and amend the location information by obtaining 
navigational status of side scan sonar platform. Based on 
the theory of artificial intelligence and pattern recognition, 
motion state information of the platform can be extracted 
by self-learning and generalization process from parameters 
such as translation, rotation and scaling obtained by multiple 
strip image matching analysis, and then motion trajectory 
of the platform can be calculated.

RELATED WORKS

With the deepening of requirements for underwater 
detection and ocean surveys, early extensive measurement 
and data processing methods are no longer applicable. Due 
to special working methods and poor working environment 
of sonar in ocean survey, relevant researchers at home and 
abroad have been carrying out a lot of research on motion 
error correction method of sonar platform and have made 
many achievements. There are different approaches for 
measurement of platform motion error according to sonar 
types.

The multi-beam sonar collects amplitude and phase 
information of multi-array elements. The data values of each 
measurement point are calculated by phase control of the 
above information, which has some anti-interference ability, 
and is less sensitive to motion disturbance of the platform. 
Yonggang Zou et al. analyzed existence of leakage detection 
area in the case of platform movement when measurement 
point distribution of multi-beam sonar measurement 
coverage area is uneven [1]. Fucheng Bai et al. carried out 
motion compensation of echo data received by multi-beam 
in the assumption that posture parameters of auxiliary sensor 
measurement are accurate [2]. Fanlin Yang analyzed relative 
positional relationship between posture sensor and transducer 
by multi-beam sonar measurement results of flat experimental 
waters, and thus eliminated offset error of posture sensor [3].

The processing of synthetic aperture sonar is based on 
linear uniformity of sonar platform, and the imaging results 
are greatly affected by motion error. Therefore, research 
on motion error correction of synthetic aperture sonar 
arouses wide concern of researchers. However, there is data 
redundancy in virtual aperture measurement of synthetic 
aperture sonar, which provides sufficient data support for 

inversion of motion trajectory of sonar platform. Peng Wu 
analyzed motion error model of synthetic aperture sonar, 
considering that MD (map drift) algorithm and COA (contrast 
optimization autofocus) algorithm can only compensate 
second-order phase error, and the resolution achievable 
is limited. The PGA (phase gradient autofocus) algorithm 
estimates the phase error directly from the echo signal. It 
can theoretically compensate phase error of any order. It has 
a wide application prospect in high-resolution imaging [4], but 
requires corresponding correction for strip mode. Dongsheng 
Chen et al., on the basis of DPC algorithm, relaxed limits of 
DPC algorithm on platform speed by calculating correlation 
of two-frame signal in “virtual phase center” [5]. Wei Liu et 
al. divided large aperture into a number of sub-apertures, 
estimated and compensated internal movement error of sub-
aperture with the original echo data [6].

For the problem of motion error estimation and 
compensation of side scan sonar, there is no mature research 
reported in current literature. On the one hand, traditional 
side scan sonar is generally only used as an auxiliary means 
of measurement, which fails to undertake independent 
high-precision marine measurement tasks, so its accuracy 
requirement is not high; on the other hand, side scan sonar 
has not high data redundancy, and thus motion inversion 
and compensation are difficult for it compared to multi-beam 
sonar and synthetic aperture sonar. Weiqing Zhu et al. led 
the development of high-resolution sounding side scan sonar 
to solve sonar shortcomings in poor precision in area below 
the sonar, incapability to accurately distinguish submarine 
undulating area, shallow water area with interface impact 
and other areas with complex sound field, and thus high 
resolution of seabed topography and geomorphology can 
be obtained [7]. Multi-beam side scan sonar [8], multi-pulse 
side scan sonar can significantly improve mapping efficiency 
of submarine landform [9]. Interference side scan sonar [10] 
receives more phase diversity of sub-array receipt signal to 
obtain depth information of seabed features. Research on joint 
detection and even data, image fusion with side scan sonar 
and other ocean exploration systems such as multi-beam 
system has also achieved some success [11]. Side scan sonar 
systems are already capable of high-precision, high-resolution 
marine survey applications. In this context, it is of practical 
significance to study inversion and compensation of side scan 
sonar motion. Although data redundancy of side scan sonar 
is not high, there is a common coverage area in its strip image 
data, and regional pattern varies with the changes in motion 
and posture [12]. So the platform motion, posture change 
parameters can be calculated according to morphological 
parameters of the common coverage area.

In general, the current research on inversion and 
compensation of side scan sonar motion is of great 
significance to improve quality of side scan sonar images and 
expand its application in high-precision marine surveying 
and mapping [13,14]. It is a potential research direction to 
study trajectory self-correction method of side scan sonar 
platform under the condition of complex environment and 
unsteady platform.
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EFFECT OF PLATFORM MOTION 

Disturbance of marine environment and human factors of 
ship handling platform will cause swing and translation of 
side scan sonar platform, which will cause blur and distortion 
of geomorphologic imaging of side scan sonar. Therefore, it 
is necessary to carry out motion compensation for it. The 
premise of compensation is capability to obtain motion 
state and posture parameters. As side scan sonar has towing 
navigation in the underwater, its motion state and posture 
parameters cannot be accurately obtained due to limitations 
of accuracy and sensitivity of navigation and positioning 
equipment, and even motion and posture measurement of 
the platform is ignored. In view of the above reasons, this 
paper studies motion state and posture parameters of the 
platform from echo data.

Firstly, the influence of platform motion on echo data is 
analyzed. Fig.1 is the motion, posture error model which 
analyzes from six components of surge, sway, heaving, 
yawing, rolling and pitch.

Fig. 1. Motion, posture error model of the platform

INFLUENCE OF SURGE AND SWAY COMPONENTS 
ON SIDE SCAN SONAR STRIP IMAGE

The effect of surge and sway on side scan sonar imaging is 
shown in Fig. 2(a) without considering other factors.

 Fig. 2. The effect of platform’s motion on side scan sonar imaging

It can be seen that surge, sway only affects translational 
position of side scan sonar imaging area, without stretching, 
distortion and other effects. In the two measurement intervals, 
degree of surge, sway of the platform is relatively small, so 
its impact on quality of geomorphic map is relatively small.

The effect of surge and sway on strip image is represented 
by the corresponding translational displacement of the 
relative position of adjacent strip images.

INFLUENCE OF HEAVING ON SIDE SCAN SONAR 
STRIP IMAGE

The effect of heaving on side scan sonar imaging is shown 
in Fig. 2(b).

Obviously, platform heaving causes a greater impact on 
side scan sonar imaging. Under the influence of external 
conditions, sonar platform raises, which causes larger 
coverage area and larger seabed dot spacing between the 
two adjacent measure points. On the contrary, the coverage 
area becomes smaller and dot spacing between two adjacent 
measure points becomes smaller.

The effect of platform heaving on strip image is shown in 
scale of local position of adjacent strip image.

INFLUENCE OF YAWING ON SIDE SCAN SONAR STRIP 
IMAGE

The effect of platform yawing on strip image is shown in 
Fig. 2(c).

Ship’s course changes of sonar platform or wind and waves 
will make the platform yaw. Yawing causes rotation in angle 
of sonar’s acoustic beam coverage area. There is no significant 
changes in the coverage area sizes and measure points spacing 
between near and far beams.

Thus, yawing of sonar platform causes rotational change 
in adjacent strip images.

INFLUENCE OF ROLLING ON SIDE SCAN SONAR 
STRIP IMAGE

The effect of platform 
rolling on side scan sonar 
geomorphologic imaging is 
shown in Fig. 2(d).

As shown in the 
figure, rolling of sonar 
platform has a significant 
impact on side scan sonar 
geomorphologic imaging, 
which causes change in 
slant angle of sonar beam, 
so that actual irradiation 
area of the acoustic beam is 
translated, and dot spacing 
of near and far beam beams 
becomes larger or smaller. 
Rolling occurs frequently 
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in low-speed navigation, poor sea conditions, which greatly 
affects clarity of geomorphic images.

In summary, the effect of platform rolling on strip image 
is represented as translation and affine changes of adjacent 
strip images.

INFLUENCE OF PITCH ON SIDE SCAN SONAR STRIP 
IMAGE

The effect of platform pitch on side scan sonar 
geomorphologic imaging is shown in Fig. 2(e).

As shown in the figure, pitch of the sonar platform also 
has a significant impact on side scan sonar geomorphologic 
imaging. It causes actual irradiation area of the acoustic beam 
to be translated, and size of coverage area also changes, with 
measure points spacing getting larger or smaller. Pitch occurs 
when the sea condition is poor, which greatly affects clarity 
of geomorphic image.

The effect of platform pitch on strip image is represented 
as translation and affine changes of adjacent strip images.

From the above analysis, it can be seen that surge, sway, 
heaving, yawing, rolling and pitch of sonar platform causes 
translation, tilt and size change of sonar coverage area in 
geomorphologic imaging, resulting in random translation, 
rotation, scaling, affine change of adjacent strip images of 
side scan sonar. Image mosaics without image correction 
can cause blur, seams, discontinuities and distortions of side 
scan sonar image.

INVERSION ALGORITHM FOR MOTION 
TRAJECTORY

It can be seen that motion and posture changes of sonar 
platform are directly related to relationship between adjacent 
strip images of side scan sonar. It can also be said that scale, 
rotation and affine changes of strip images measured by side 
scan sonar reflect changes in motion and posture of sonar 
platform.

In measurement of strip image by side scan sonar, 
trajectory and posture changes of the platform will result 
in strip image coverage and proportional affine changes. 
Through the motion model of Section 3, we can establish 
the relationship between motion state of sonar platform and 
geomorphic strip image:

(1)

(2)

Wherein,  is the real landform of the common 
measurement area of the source strip and matching strip; , 

 are geomorphic images of common measurement area of 
source strip and matching strip acquired by side scan sonar 
measurement, respectively.  is sonar platform motion 
condition parameter matrix, which can convert submarine 

landform into a geomorphic strip image in a particular 
motion case; ,  are position and posture parameter 
matrix of the sonar platform at measurement of source strip 
and matching strip by side scan sonar.

By the matching algorithm described above, the matching 
relationship between  and  can be obtained as follows:

(3)

Wherein,  is matching relationship matrix. That is, under 
the premise that rotation, scaling and affine changes of the 
two images are known, measurement point in source strip 
can be mapped to matching strip.

Simultaneous equation of (1) ~ (2) can derive that:

(4)

Wherein, is the inverse matrix of platform 
transformation matrix .

Ground geomorphic data cannot be accurately measured 
and acquired, so motion state of the platform cannot be 
calculated by formulas (1) and (2). It can be seen from formula 
(4) that motion state of the sonar platform at measurement of 
matching strip can be derived from the motion parameters 
of sonar platform at measurement of source strip under the 
premise that transfer matrix  and inverse matrix  of 
sonar platform motion parameters, and relative matching 
relationship  between source strip and matching strip are 
known.

Fig. 3. The block diagram of inversion algorithm

CONSTRUCTION OF NEURAL NETWORK

There are many factors that cause changes in motion 
and posture of sonar platform and the platform often has 
various modes of motion such as surge, sway, heaving, yawing, 
rolling and pitch. It is very difficult to establish the model for 
inversion of sonar platform motion and posture via related 
parameters of adjacent strip images. But for the geometric 
model described in Section 3, it is easy to calculate region 
information and adjacent positional relationship of strip 
image from platform motion. In addition, in calculation of 
matching relationship of adjacent strip images according to 
matching point, it is necessary to assume that three or more 
matching points cause rigid change in the enclosed area, and 
this assumption will result in calculation error. Therefore, we 
consider application of artificial intelligence theory with good 
approximation ability and learning generalization ability for 
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complex system, to achieve inversion operation of formula (4). 
As analyzed above, the block diagram of inversion algorithm 
is shown in Fig. 3.

Artificial neural network has good approximation ability 
for complex systems and can overcome influence of nonlinear 
factors in the system. Artificial neural network can simulate 
the relationship between multi-dimensional input and output 
without need to understand the complicated internal situation 
of the system, thus avoiding direct modelling of platform 
motion. In addition, artificial neural network construction 
is relatively simple, as there is no complex, time-consuming 
matrix operation. Based on the aforementioned functional 
model, a backward reflection artificial neural network 
structure is established, which is multi-layer sensor network 
structure and an error back propagation algorithm is for 
training. The system consists of input layer, output layer and 
hidden layer.

a) Input layer
The purpose of this network is to invert motion trajectory of 

the sonar platform from the matching relationship of adjacent 
strip images. The matching relation parameters of adjacent 
strip images can be obtained by the aforementioned matching 
algorithm as known input parameters. With platform motion 
position and posture parameters when the source strip image 
is measured as reference, the motion position and posture 
parameter of matching strip image are output.

After matching adjacent strip with image matching 
algorithm [15, 16], a number of matching point pairs are 
obtained for each pair of side scan sonar images. To determine 
the relative relationship between two images, more than three 
pairs of matching points are required. Since relative position 
information of matching point contains relative translation, 
rotation, affine relationship of adjacent strip image, it can be 
directly inputted as input information. To enhance algorithm 
effectiveness, relative position information of four pairs of 
matching points is used as input. According to equation (4), 
sonar platform motion information of source strip in the 
matching point is also input, and finally the sonar platform 
motion information is output when the four points in the 
target strip are measured.

b) Hidden layer
The neurons of the input layer weight the input feature 

parameters and send them to the hidden layer nodes. The 
hidden nodes sum the weighted values sent by the input nodes, 
and send them to the output layer after they are activated by 
activation function and weighted. Logistic function is selected 
as activation function:

(5)

Wherein,  means the weighted sum of the input signals 
of -th node of the hidden layer,  means active output of 

-th hidden layer node.

The activation function is non-linear, so that the network 
has nonlinear approximation ability.

c) Output layer
The output layer sums the weighted eigenvalues sent by 

the hidden layer and outputs it. In this paper, the output 
response is defined as surge, sway yawing, heaving rolling, 
yawing angle and pitch angle of the target strip.

d) Learning algorithm
The BP algorithm is used for neural network training, 

and the mapping problem of neural network learning input 
and output is transformed into a nonlinear optimization 
problem, wherein, the most popular and mature gradient 
descent algorithm in optimization is used. Network weight 
is corrected by iterative operation to minimize the cost of 
network output.

The cost function uses the mean square error between the 
neural network output and the desired output :

(6)

Wherein,  is dimension number of output result of the 
output layer, .  is -th result of actual output 
of the neural network,  is the desired output. 

To sum up, the whole algorithm consists of forward 
calculation process and error back propagation process. The 
mean square error of the neural network is less than the 
specified value after sample set training, that is, the algorithm 
is considered as convergent.

In this paper, we set motion and posture parameters of 
reference strip and matching strip, calculate the coverage 
area of reference strip and matching strip using the geometric 
model described in the paper, and select a number of points 
from the two common overlapping regions as matching point 
pair. These parameters are used as the input and expected 
output of the neural network to train the network. After 
its convergence, it is considered that the network training 
is successful and can reflect mapping relation between 
matching-related information and motion parameters. The 
actual matching situation is input into the network, and then 
desired motion parameters can be obtained.

TRAINING DATA PREPARATION

When the network structure is established, the matching 
relationship between the adjacent strips and surge, sway, 
heaving, yawing angle, rolling angle and pitch angle 
information of the reference strip are input. Through training, 
learning and generalization of the network, navigation 
parameters of the strip to be tested can be obtained.

Training of the network requires a large amount of side 
scan sonar data as a basis. In the cases that data acquisition 
costs are high, experiment involves much equipment and 
the experimental process is complex, it is difficult to obtain 
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enough information. Therefore, in the training phase, we 
consider auxiliary calculation of relevant parameters through 
modelling to obtain training data and meet needs for a large 
amount of training data at a small cost.

Using the model of Section 3, we can calculate the relevant 
parameters of adjacent strip images of the side scan sonar 
under the condition that the sonar platform has surge, sway, 
heaving, rolling and pitch motions. The relative position 
between the platform navigation trajectory and the matching 
point of reference strip of side scan sonar in the adjacent strip 
image is taken as the network input, and platform navigation 
trajectory of strip to be matched of side scan sonar is used as 
the expected output for network training.

NEURAL NETWORK LEARNING

Through the above modelling, calculation process, 
a large number of samples can be obtained. The samples are 
randomly divided into two subsets: training set and test set. 
Training subset is used to train neural network, adjust the 
network parameters so that physical relevance contained 
in the data can be learnt. And then system error is tested 
through the test set data. If the error range does not meet 
the requirements, then repeat the process, and continue to 
adjust the neural network until the system performance meets 
the requirements.

NEURAL NETWORK GENERALIZATION

After the end of the network learning, the system has the 
ability to extract regular output from the input data, that is, 
generalization ability. The platform navigation information 
of the reference strip is read from side scan sonar data, 
and matching of adjacent strip is calculated by matching 
algorithm. After organization, it is input into the trajectory 
inversion system and output of the system is regarded as 
trajectory of strip to be matched.

EXPERIMENTS

This section uses the experimental data generated by 
modelling to validate the motion inversion algorithm.

The existing side scan sonar navigation data lacks sufficient 
navigation information. In order to validate the inversion 
algorithm, we use the motion model of Section 3, assume that 
scheduled navigation speed, course of the platform and its 
height from the bottom are known when reference strip and 
matching strip are measured, and add10% random posture 
and elevation changes on this basis, such as surge, sway, 
heaving, rolling and pitch and so on. It is easy to calculate 
geographical coordinates and overlapping area of each beam 
footprint in the strip image after knowing track, elevation 
and posture of both strips. A matching pair is randomly 
selected from the overlapping area, to replace 88 matching 
pairs of two strip images obtained by side scan sonar image 
matching algorithm based on SURF algorithm and typical 

region similarity calculation method. Every four matching 
points are randomly combined into one set, forming 64 sets 
of matching data. According to the model, platform position 
parameters and posture parameters (including instantaneous 
rolling angle, pitch angle and yawing angle of the platform) 
of each set of input data points of the source strip image 
are obtained. The matching point coordinate data of 64 sets 
of 32-dimensional data (4 pairs of matching points, a total of 
8-dimensional data), reference platform position parameters 
(4-point geographical coordinates, elevation, a total of 
12-dimensional data), reference platform posture parameters 
(4-point rolling angle, pitch angle and yawing angle, a total 
of 12-dimensional data) are input to the trained neural 
network, resulting in sonar platform position and posture 
parameters of 64 sets of matching strips at four matching 
points (including geographic coordinates, elevation, rolling 
angle, pitch angle and yawing angle, a total of 12-dimensional 
data). For all the matching points of the 64 sets, the repeated 
point trajectory parameters are averaged to obtain a unique 
coordinate.

Fig. 4 is the learning curve for training learning. After 80 
cycles, the neural network learning performance is basically 
no longer improved. If the detection error of the system at 
this time is within the allowable range, it can be regarded 
that the network has passed training, and has established 
a model relationship between input and output.

Fig. 4. Learning curve of training

The constructed neural network analyzes the input 
matching parameters and outputs the track coordinates and 
posture information of the sonar platform when it measures 
the matching strip. The track coordinates and elevation are 
compared with the coordinates calculated by the motion 
model, and the results are shown in Fig. 5.
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(a) Three-dimensional trajectory map                         (b) trajectory plane curve 
Fig. 5. Platform trajectory obtained from Inversion algorithm and model 

estimation results

As shown in Fig. 5, the red cross indicates the motion 
trajectory of the platform obtained by inversion algorithm. 
The blue circle represents the platform trajectory calculated 
by the model established in section 3. It can be seen that 
regardless of plane coordinates or elevation, the inversion 
results are basically able to reflect motion state of the platform.

Fig. 6. The bias between the inversion result and the recorded coordinates

Fig. 6 shows the relative error percentage of the results of 
elevation inversion and the results of model calculation. It 
can be seen that the error is basically controlled within 2%. 
The error levels of other matching indicators are shown in 
Table 1. As can be seen, the total error level meets the needs 
of the application.

Because platform motion is random, data transmission 
cannot be strictly synchronized, etc. the information provided 
by auxiliary navigation device can not reflect instantaneous 
fluctuation of its motion and posture, and the inversion 
algorithm proposed in this chapter can make up for the defect 
in this respect. It can be seen from the above experiment that 
the inversion algorithm has the ability to extract motion and 
posture parameters of the sonar platform accurately from the 
echo data, which provides the basis for the following tasks 
such as compensation, imaging and target recognition.

Tab.1. The error levels of matching indicators

Relative 

error(%)

Coordinate 

X

Coordinate 

X
Elevation Rolling Pitching Yawing

Minimum -0.1 -1.32 -2.1 -1.2 -3.7 -0.8

Maxmum 0.986 1.7 1.18 2.8 1.2 3.3

CONCLUSIONS

In this chapter, the motion trajectory inversion algorithm 
of side scan sonar platform based on artificial neural network 
is proposed. At the image level, motion parameters of the 
sonar platform are extracted from the measured echo data. 
The algorithm has the following advantages: a). Side scan 
sonar data redundancy is insufficient, so it is difficult to 
obtain its motion state with traditional methods. In this paper, 
motion parameters of matching strip are inverted with relative 
position relation of adjacent strip. b). Random motion of side 
scan sonar platform and its influence on strip data imaging 
are relatively complex and it is difficult to model motion 
parameters of inversion platform. The self-learning ability of 
artificial neural network algorithm can make the modelling 
process relatively simple and straightforward, and improve 
feasibility of the algorithm. c). The neural network algorithm 
requires use of a large number of samples for training, and it is 
difficult for usual ocean measurement task to meet the needs. 
The algorithm solves this difficulty by modelling calculation 
and construction of sufficient samples.
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