
POLISH MARITIME RESEARCH, No S1/2017 203

POLISH MARITIME RESEARCH Special Issue 2017 S1 (93) 2017 Vol. 24; pp. 203-212
10.1515/pomr-2017-0040

TECHNICAL STATE ASSESSMENT OF CHARGE EXCHANGE SYSTEM 
OF SELF-IGNITION ENGINE, BASED ON THE EXHAUST GAS 

COMPOSITION TESTING

Jacek Rudnicki
Ryszard Zadrąg
Gdansk University of Technology, Poland

ABSTRACT

This paper presents possible use of results of exhaust gas composition testing of self - ignition engine for technical 
state assessment of its charge exchange system under assumption that there is strong correlation between considered 
structure parameters  and output signals in the form of concentration of toxic compounds (ZT) as well as unambiguous 
character of their changes.  Concentration of the analyzed ZT may be hence considered to be symptoms of engine 
technical state. At given values of the signals and their estimates it is also possible to determine values of residues which 
may indicate a type of failure. Available tool programs aimed at analysis of experimental data commonly make use 
of  multiple regression model which allows to investigate effects and interaction between model input quantities and 
one output variable. Application of multi-equation models provides great freedom during analysis of measurement 
data as it makes it possible to simultaneously analyze effects and interaction of many output variables. It may be also 
implemented as a tool for preparation of experimental material for other advanced diagnostic tools such as neural 
networks which , in contrast to multi-equation models, make it possible to recognize a state at multistate classification  
and - in consequence – to do diagnostic inference.  Here , these authors present merits of application of the above 
mentioned analytical tools on the example of tests conducted on an experimental engine test stand.
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INTRODUCTION

During execution of engine running process, parameters 
of its structure undergo changes. It is not without any impact 
on its performance described by a set of output parameters. 
Mutual relation between engine structure parameters 
and output parameters makes it possible, in determined 
conditions , to take output parameters as  engine technical 
state symptoms measured without its disassembling , because 
physical- chemical processes taking place during running 
process and quantities describing them can be generally 
observed and measured from outside. Amount of emission 
of exhaust gas components belongs a. o. to the quantities in 
question [2, 5, 6, 8].  

Correct run of working cycle (especially run of combustion 
in engine cylinder) depends to a large extent on correctly 
working charge exchange system which has to ensure first 
of all effective discharging the combustion products and 
filling the working space with an required amount of air of 
appropriate quality.

Technical state identification of  elements of charge 
exchange system is practically impossible in view of existing 
standard measurement equipment of engine. Known 
diagnostic methods are first of all based on the assessing of 
data concerning flow of working medium volume or mass 
and its losses in engine cylinders [11]. 

The following elements were taken to represent charge 
exchange system of typical ship engine (Fig. 1):
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- air filter;
- air compressor;
- air cooler;
- engine cylinders together with elements of air inlets 

and exhaust gas outlets;
- gas turbine.

Fig. 1 Schematic functional diagram of engine charge exchange system. 1 – air 
filter, 2 – compressor, 3 – electric drive motor of air compressor, 4 – air cooler, 

5 – engine cylinders together with air inlet and exhaust gas outlet elements

INITIAL ASSUMPTIONS

On the basis of analysis of the set of  quantities 
characterizing the charge exchange system  an initial version 
of diagnostic table ( Tab. 1) and the system’s topological model 
( Fig. 2) was prepared [13].  

In view of occurrence of many cases of intuitive 
determination of changes as well as due to rather not strong 
relations of the exhaust gas toxicity indices shown in Tab.1 
with the engine running parameters and these with structure 
parameters ( failures), it is necessary to verify data of Tab. 1 
empirically and determine the existing relations by simulation 
investigations.

Tab. 1 Initial diagnostic table  for charge exchange system of self-ignition engine

Diagnostic parameter Failure location and type

air filter air compressor air cooler engine cylinder
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Pressure drop on air filter ΔpF + 0 0 0 0

Compressor compression ratio  πs 0 - 0 0 0

Compressor adiabatic efficiency ηad 0 - 0 0 0

Supercharging air pressure drop Δpba 0 0 + 0 0

Air temperature drop in cooler ΔTba 0 0 - 0 0

Cooler efficiency ( cooling effectiveness) ηch 0 0 - 0 0

Air excess coefficient λ - - - - -

Specific fuel consumption b + + + + +

Supercharging air pressure pba - - - - -

Compression pressure in engine cylinder pc - - - - -

Maximum combustion pressure pmax - - - - -

Exhaust gas temperature Tg1 - - - - -

Turbo-compressor rotational speed nt - - - - -

Concentration of nitrogen 
oxides 

in collector CNOx(k) - - - - -
in casing CNOx(s) - - - - 0

Concentration of carbon 
oxide

in collector CCO(k) + + + + +
in casing CCO(s) 0 0 0 + 0

Concentration of 
hydrocarbons

in collector CHC(k) + + + + +
in casing CHC(s) 0 0 0 + 0

Exhaust gas smokiness. in collector D + + + + +
Notation:  
„-” – decrease in value of a parameter; „+” - increase in value of a parameter; „0” – without any change.
Comment: The diagnostic parameters ΔpF, πs, ηad, Δpba, ΔTba, ηch, b are complex quantities determined on the basis of results of direct measurements.



POLISH MARITIME RESEARCH, No S1/2017 205

SET OF EMPIRICAL METHODS FOR 
SIMULATION INVESTIGATIONS ON 

CHARGE EXCHANGE SYSTEM 
Simulation investigations are mainly aimed at determining 

whether it is possible to identify state of charge exchange 
system on the basis of assessment of changes in exhaust gas 
toxicity indices, including the following [12]:

• verification of the parameters given in Tab. 1;
• verification of changes in values of diagnostic 

parameters, depending on location and type of 
unserviceability of elements of charge exchange 
system;

• determination ( detection) of connections (relations) 
of structure parameters of elements of charge exchange 
system with engine working parameters, and these 
with diagnostic parameters – exhaust gas toxicity 
indices;

• possible selection , out of exhaust gas toxicity indices 
, crucial diagnostic parameters , and , out of engine 
running indices, auxiliary ( verifying) diagnostic 
parameters of state of elements of engine charge 
exchange system. 

The unserviceability types selected as a result of the 
performed analysis of elements of charge exchange system 
were simulated in the following way:

• contamination of air filter – by throttling partly 
(shadowing) its active surface  pf;

• wear or contamination of compressor flow 
part - by throttling partly air at inlet ps;
• untightness of piston – rings – cylinder 
unit   – by grinding partly sealing surface of 
rings as well as enlarging the piston-ring joints 
to get assumed values of the cross-section area of 
untightness  Su;
• untightness of inlet  and outlet valves – by 
grinding partly fying face to get assumed values 
of the cross-section area of untightness Sz.

The approximate wear values given in 
Tab. 2  served as a basis for preparation of the 
specified unserviceability events to be used in 
basic simulation investigations. The way of their 
preparation consisted in the following :
• removal (e.g. by grinding or machining) 
given volumes of material out of surfaces of 
cooperating elements of combustion chamber space 
, which correspond to preliminarily calculated 
wear values or result from experimental data ( 
verifying data from repair workshop),
• execution of preliminary tests  in respect to 
unserviceability events which decide on quality of 
filling. The percentage changes in the air flow drag 
ps (0;33,3 %) result from the air volume fluxes at 
clean (V = 0,12 m3/s) and contaminated (V = 0,08 
m3/s) flow part of air compressor. And,  the changes 
in the air flow drag pf  (0;50 %) result from the 
difference between the air filter active surface 

of clean flow (4071,5 mm2) and that contaminated 
(2035,75 mm2).

In view of a vast range of necessary experimental 
measurements , resulting from the aim of simulation 
investigations , it was assumed , like in case of fuelling system 
testing, to carry out laboratory tests aided by experiment 
planning theory [4, 7] as well as the computer software 
STATISTICA PL.

1. The set of input data X:
x1 -  engine rotational speed n [rpm];
x2 – engine torque Ttq [ N×m];
x3 – air filter contamination pF [%];
x4 – contamination of compressor flow part ps [%];
x5 – untightness of TPC unit Su [mm2];
x6 – untightness of valves Sz [mm2].

2. The set of output data Z : 
z1 -  engine power Pi  [kW];
z2 –  air excess ratio λ;
z3 – hourly fuel consumption B [g/h]
z4 -  maximum pressure in injection pipe pwtr(max);
z5 – maximum compression pressure pc(max) [MPa];
z6 -   cylinder exhaust gas temperature Tg1 [K];
z7 – mean indicated pressure pmi [MPa];
z8 – compression pressure in the instant of fuel injection 

pc  [MPa];
z9 – maximum combustion pressure pmax [MPa];
z10 – carbon oxide concentration within exhaust gas outlet 

collector CCO(k) [ppm];

Fig. 2 Topological model of engine charge exchange system  
1 – air filter 2 – compressor, 3 – air cooler, 4 – engine combustion chamber, 5 – fresh water 

cooler, 6 – injection apparatus, 7 – engine crankshaft casing, 8 – exhaust gas collector
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z11 – carbon oxide concentration within crankshaft casing 
CCO(s) [ppm];

z12–  concentration of hydrocarbons within exhaust gas 
outlet collector CHC(k)  [ppm];

z13 – concentration of hydrocarbons within crankshaft 
casing CHC(s) [ppm];

z14– nitrogen oxides concentration within exhaust gas outlet 
collector CNOx(k) [ppm];

z15 – nitrogen oxides concentration within crankshaft casing 
CNOx(s) [ppm];

z16 – oxygen concentration in exhaust gas CO2 [%];
z17 – pressure increase rate in cylinder (Δp/Δα)s;
z18 – indicated specific fuel consumption bi;
z19 – engine indicated efficiency ηi. 

3. The set of the constants, C, which may occur during 
measurements and have influence on changes in output 
quantities Z (e.g. resulting from a used kind of fuel 
oil , lubricating oil ) . As assumed , the experimental 
investigations will be short-lasting and carried out 
in similar conditions , i.e. they will be not taken into 
account in the experiment plan and it should deal only 
with one measurement block. 

4. The set of the disturbing quantities, H, which may 
undergo changes during execution of the experiment:

h1 – ambient temperature ta [oC];
h2 -  atmospheric pressure pa [hPa];
h3 – relative humidity of air in the laboratory j [%].

STATISTICAL ANALYSIS OF RESULTS OF 
THE EXPERIMENT

In view of the assumed linear model of influence of charge 
exchange system structure parameters on engine working 
indices , especially concerning exhaust gas components, a 
simplified statistical analysis of results of the experiment 

was performed. As a result of the analysis the following was 
obtained:

• approximating polynomials (functions of the 
experiment’s object) describing functional model of 
charge exchange system;

• assessment of main effects and interactions of the 
determined ( assumed) model;

• correlation of input and output quantities describing 
the experiment’s object;

•  assessment of adequacy of function of the experiment’s 
object.

Based on an analysis of the models possible to be used and 
the data given in Tab. 3, was assumed a model which takes 
into account two-factor interactions, despite more favourable 
values of the basic coefficients (R2, MS) for estimation of 
representation (approximation) of relations between input 
and output quantities of the experiment’s object , with taking 
into account  interactions of a higher order, e.g. three-factor 
ones [3, 14].

As results from the data of Tab. 3 , the model with 
three-factor interactions covers entirely all the relations 
( variations) between input and output quantities 
 (the coefficient of determination R2 = 1), which simultaneously 
means that no residues are rejected and they are not taken 
into account in the model (MS = 0). However ,as results 
from mathematical description of any empirical relation , 
its accuracy increases along with number of interactions 
which contribute simultaneously to increasing confounding 
of approximated relations. Hence, confounding degree 
influences clarity of subject-matter analysis of describing 
problem ( phenomenon ) and , consequently, may lead to 
incorrect conclusions and decisions. In such cases , as a result 
of the confounding ( especially multi-factor one), obtained 
calculation results are often incorrect and inconsistent with 
both theoretical physical principles and empirical reality of 
a phenomenon under investigation. Therefore , taking into 
account minor differences between values of the analyzed 
statistical measures , one assumed the model of two-factor 
interactions for subject-matter analysis. For the models , were 
determined approximating polynomials for output quantities 

Tab. 2.  Input data in the plan of experimental test on charge exchange system

No. Input quantity Notation Dimension
Values of input quantities

Remarks
min (-1) max (+1)

1
Rotational speed n rpm 850 1100

2
Torque Ttq N·m 0 77

3 Untightness of rings  of TPC 
unit Su mm2 0,57 1,178 grinding sealing surface and 

joint 
4 Untightness of inlet and 

outlet valves. Sz mm2 0 0,75 Groove in fying face of inlet 
and outlet valve 

5 Flow drag increase within 
filter pF % 0 50 Flow throttling

6 Flow drag increase within 
flow part of compressor ps % 0 33 Flow throttling
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describing state of investigated engine with unserviceable 
charge exchange system as well as statistical correlations 
between input and output variables of the experiment’s 
object. The determined approximating polynomials make 
it possible to determine any relation between particular 
variables and also to calculate and estimate influence of 
introduced (simulated) failures (wear) of elements of charge 
exchange system on engine running and toxicity indices. 
It may be also assumed that it would be possible to determine 
mutual relations between structure parameters and exhaust 
gas toxicity indices – directly or indirectly through engine 
running indices. As assumed, it will be this way possible to 
reveal, out of exhaust gas components, diagnostic parameters 
for given engine fuelling elements or units . Correctness of 
the assumption is confirmed by the existing relationships ( 
correlations) between wear of elements of charge exchange 
system and concentration of toxic components in engine 
exhaust gas.  

CONCEPT OF A NEURAL DIAGNOSTIC 
SYSTEM

Since the form of approximating polynomials for output 
quantities describing state of  investigated engine with 
unserviceable charge exchange system  is complex , an 
applicable alternative may be a neural approximating model 
which,  based on experimental results as well as determined 
coefficients of approximating polynomials , may be applied to 
the modelling of arbitrary nonlinearity and which is highly 
resistant against disturbances [1, 9, 10].

A condition for reaching correct responses from used 
neural networks is appropriately numerous set of learning 
data. To work out such a set can be made possible by 
using the above described approximating polynomials.  

For the purposes of the simulation investigations whose 
results are presented in the further part of this paper, a general 
schematic diagram of neural failure detection system was 
worked out under the following assumptions :  

• the system identifies the following classes of engine 
technical states:

 - the class of states S0 – technically serviceable engine,
 - the class of states S1 – untightness of sealing rings,
 - the class of states S2 – untightness of inlet and/or 

outlet valves,
 - the class of states S3 – increase of flow drag within 

air filter,
 - the class of states S4 – increase of drag within flow 

part of air compressor,
• for each of the class of states of technically 

unserviceable engine will be worked out a separate 
neural sub-network (4 sub-networks in total) which 
generates , at its outlet , the value „True” (1) – in case 
of identification of a dedicated class of states or the 
value „False” (0) – in the opposite case.  The schematic 
diagram of separate sub-network is shown in Fig. 3

• the engine torque  Ttq  and engine rotational speed 
n  were assumed to be independent variables ( input 
parameters), 

• parameters under diagnostic surveillance: 
 - exhaust gas temperature tg1,
 - concentration of nitrogen oxides within exhaust gas 

collector , CNOx(k),
 - concentration of carbon oxide within exhaust gas 

collector ,CCO(k),
 - concentration of hydrocarbons within exhaust gas 

collector , CHC(k),
 - concentration of oxygen in exhaust gas , CO2,

• for each of the parameters a neural model will be 
worked out and all the models prepared this way 

Tab. 3 Set of values of selected statistical measures for empirical functional models of charge exchange system

Output 
quantities

Model without interactions Model with two-factor interactions Model with three-factor 
interactions

R2 MS R2 MS R2 MS
B 0,009662 0,009663 0,99766 0,00114 1 0

A/F 0,93843 18,2333 0,97808 29,2124 1 0
λ 0,93752 0,08526 0,97774 0,13666 1 0

CCO(k) 0,87006 97291 0,99916 2816,31 1 0
CCO(s) 0,56833 16,583 0,87708 21,2500 1 0
CHC(k) 0,81543 1501,49 0,99677 210,125 1 0
CHC(s) 0,70837 1126,9 0,99998 0,5000 1 0
CNOx(k) 0,88088 1102,3 0,95341 19,400 1 0
CCO2(k) 0,97955 0,13079 0,99512 0,14051 1 0

CO2 0,97314 0,38387 0,99593 0,26153 1 0
tg1 0,95357 757,25 0,99786 157,250 1 0
pc 0,7297 0,0244139 0,99775 0,0009125 1 0

pc(max) 0,84452 0,0292583 0,99272 0,0061625 1 0
pmi 0,88763 4562,319 0,98978 3321,125 1 0
pmax 0,85422 0,0258563 0,99811 0,0015062 1 0
bi 0,50217 690,7553 0,98854 127,2012 1 0
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will form the so-called bank of neural observers 
[1, 8], intended for the modelling of values of the 
considered parameters in normal ( free of failures ) 
engine running state, 

• by comparing output signals from the model and 
diagnosed engine, residues, i.e. signals representing 
discrepancies between model and engine, will be 
determined,

• the obtained vector of residues r = [r1 ... r5]  will be 
analyzed by a neural classifier of residues whose task 
will be to determine if a failure occurred – in such 
case the value “True” (1) will be generated at its output, 
otherwise  the system will generate the value “False” 
(0),

• the vector a = [w1 ... w4] (wi = 0 ∪ 1) achieved as a 
result of action of the entire system (4 sub-networks), 
will constitute a diagnostic information source  (e.g. 
in case of obtaining the vector [0 0 0 0] there exist 
premises to consider the current state of engine as 
that belonging to the class of states S0 etc)

The results presented in the further part of the paper was 
limited to only one sub-network  – in this case - to the network 
which identifies occurrence of the class of states S1

RUN AND RESULTS OF SIMULATION 
INVESTIGATIONS 

The results obtained in the form of approximating 
polynomials of output quantities describing state of considered 
engine with unserviceable charge exchange system, were 
used for working out the set of learning data for particular 
sub-networks. 

In the case in question the form of the polynomials is as 
follows : 

                         (1)

where :
[yi] – column vector of parameters under diagnostic 

surveillance (i = 1, 2,  … 5) :
y1 – exhaust gas temperature – tg1,
y2 – concentration of nitrogen oxides in exhaust gas - CNOx,
y3 - concentration of carbon oxide in exhaust gas - CCO,
y4 - concentration of hydrocarbons in exhaust gas - CHC,
y5 - s concentration of oxygen in exhaust gas - CO2.
[Bi] – column vector of constants appearing in 

approximating polynomials:

[xk] – row vector of input variables:

where:
 Ijk – regression coefficients concerning interactions yj → yk

Fig. 3 Schematic diagram of the neural subsystem for detection of the state Si, (i = 0, 1, …4)
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[Aj,k] –matrix of regression coefficients of approximating 
polynomials

In connection with that five parameters subjected to real 
time control were selected,  it become necessary , in line with 
the assumed concept , to form the same number of neural 
models representing relationship between the input variables 
: Ttq and n , and variables subjected to diagnostic surveillance 
in the state considered normal , i.e. the state s0.

The first stage of the work consisted in running preliminary 
investigations aimed at selection of type and optimum 
structure of neural networks of particular models. To this 
end, were applied automatic tools of the software STATISTICA 
Neural Networks v. 7.0 aiding in the testing of neural networks 
used for data analysis and prediction issues [15]. 

The aim of training the networks was to reach such state of 
them , which determines correct reaction in the broad range 
of input functions which , in this case, are various values of 
engine load  (in the range of  0÷77 Nm) and rotational speed 
(850 ÷ 1100 rpm), introduced to inputs. The worked out  – 
by using approximating polynomials - learning set covered 
19578 cases in relation to each of the five parameters. The 
example realizations of changes in values (cases : CNOX and 
tg1) in function of engine torque and rotational speed are 
presented in Fig. 4 and 5.

Fig. 4. The functional relationship between CNOX and (Ttq, n)

Fig. 5 The functional relationship between tg1 and (Ttq, n)

As a result of the performed simulations and analysis of 
their results, the network of the type : multilayer perceptron 
with one hidden layer, was selected.

The stage of preliminary investigations made it possible 
to perform the basic training of networks for each case of 
neural observer modelling changes in selected variables. The 
training and final architecture of the networks was realized 
by means of the software MATLAB 2015b and its dedicated 
extension „Neural Network Toolbox” [16].

Application of  the basic quality measure for 
the worked - out neural models  , i.e. values and 
distribution of residues and percentage errors between 
values expected at output from networks  and its real 
response,  showed adequate quality of representation 
and negligible , from practical point of view, differences.   
The next stage was aimed at the working out of structure and 
training of residues generator. For each of the considered class 
of states, the task of  the residues generator is to determine 
values of differences between monitored output signals  
of the diagnosed engine, yi = f(Ttq,  n),  and values of 
responses, corresponding with them, from  the side of 
the worked out neural observers bank , yis = f(Ttq, n). 
For the presented case of the class of states S1:
− exhaust gas temperature  tg1 - y1, 
− concentration of nitrogen oxides in exhaust gas, CNOx - 

y2, 
− concentration of carbon oxide in exhaust gas , CCO - y3, 
− concentration of hydrocarbons in exhaust gas , y4, 
− concentration of oxygen in exhaust gas, CO2 - y5,
− neural model response, tg1s - y1s, 
− neural model response CNOxs- y2s,
− neural model response CCOs - y3s,
− neural model response CHCs - y4s,
− neural model response CO2s – y5s,

The vector of residues r = [r1, r2, r3, r4, r5] , obtained this way 
, may be considered  a signal which contains information on 
occurred failures ( in this case – untightness of sealing rings). 
During the engine running in the state taken as normal (the 
class of states S0), components of the obtained vector of residues 
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should be close to zero , but in the case of failure occurrence 
the difference becomes significantly greater. 

Fig. 6 The functional relationship between tg1 and (Ttq, n) – class of states S1  
(Su ∈ <0,57, 1,178> [mm2]) 

The learning sets worked out with the use of approximating 
polynomials, contained about 20000 cases with reference 
to each of the five parameters. For the presented case of the 
class of states S1 , the set of model responses yis = f(Ttq, n) 
was worked out for random changes in the values Su  within 
the range of 0,7 ÷ 1,178 mm2, n – values within the range of 
850 ÷ 1100 rpm, Ttq  - values within the range of 0 ÷ 77 Nm.  
Fig. 6 exemplifies the relationships y1s = f(Ttq, n) for the class 
of states S1 .

Fig. 7 Values of the residues r2 (NOx concentration ) – the class of states S1. 

Based on experience dealing with optimum network 
structure and type , it was decided to select a linear neural 
network which models relations between its ten inputs (y1, y2, 
y3, y4, y5, y1S, y2S, y3S, y4S, y5S) and five outputs (r1, r2, r3, r4, r5).  
The results achieved in the case of the class of states S1 , are 
shown for the parameter CNOx in Fig. 7.

Like in the case of  the neural observers bank , the test of 
the network and application of its quality measure in the form 
of values and distribution of modules of the residues between 
values expected at network’s output and its real response, 
showed very good quality of representation and negligible , 
from practical point of view , differences. Fig. 8 presents an 
example result for the class of states S1 . 

Fig. 8 Distribution of modules of absolute errors of residues generator – the 
class of states S1

The task of the last element of  failure detection and 
location system , i.e. the state classifier (block of residues 
evaluation), is to analyze residue’s vector in order to determine 
whether a selected failure has occurred or not. This is a typical 
classification issue consisting in the matching  of  vector’s 
symptoms to one of the distinguished classes of states. 

Based on the 1st stage of investigations, to solve the 
presented issue , the network of the multilayer perceptron type 
with one hidden layer , was designed and trained, see Fig. 9.

Fig. 9 Topological diagram of neural classifier of states 
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The classifier , sending to network’s input, the vector r = [r1, 
r2, r3, r4, r5] , triggers activation of one neuron of output 
layer – the value „True” (1) in the case of identification of 
the dedicated class of states , or the value „False” (0) – in the 
opposite case.

The learning sets intended for training the classifiers were 
worked out on the basis of the assumption that a change , 
by less than 10% , in values of particular classifiers , which 
results in transition of engine to a given class of states Si 
(Tab. 2, row  3 ÷ 9), triggers  the response „False “ at classifier’s 
output . Otherwise, the response „True” is obtained at neural 
network’s output. 

The training, validation and test of the classifier, based on 
the learning set , showed its very good matching and negligible 
number of erroneously classified cases (below 1% during the 
testing phase).  

TEST RESULTS OF NEURAL MODELS

The working-out of particular networks and positive 
completion of their training made it possible to test the 
presented system with the use of  the testing set of simulated, 
determined cases of values of the exhaust gas temperature 
tg1 and the concentration of nitrogen oxides in exhaust 
gas  CNOx ,  concentration of carbon oxide in exhaust gas, 
CCO, concentration of hydrocarbons in exhaust gas , CHC , 
and concentration of oxygen in exhaust gas , CO2.

The set of test cases containing 5000 sets of values (1000 
cases for each of the class of states) were worked out on the 
basis of the prior obtained approximating polynomials which 
were randomly changed in each of the set by using a generator 
of pseudo-random numbers. The change concerned values of 
all the parameters appearing there, within the range of  ±  5%;

The presented procedure had to show first of all 
susceptibility of the system on disturbances , and 
consequently, its potentially lower or greater usefulness  
for implementation in real ship power plant conditions.  
Fig. 10 shows an error matrix for the case of the class of states 
S1 , and Tab. 4 summarizes generally results of the tests. 

Fig. 10 State classifier’s error matrix – the class of states S1

Tab. 4 Results of testing the neural system for detection and location of errors 

Subset of testing 
set

Correctly classified 
state 

(number of cases 
(%)

Erroneously 
classified state 

(number of cases 
(%)

State s1 99,8 0,2

State s2 98,4 1,6

State s3 99,3 0,7

State s4 98,9 1,1

State s5 99,5 0,5

Mean   99,18    0,82

SUMMARY

The example investigation results, i.e. the values 
obtained during active experiment , indicate that the 
proposed “on-line” system for detection and location of 
failures correctly identifies a given class of engine states. 
From practical point of view its quality may be called excellent. 

However it may also seem that specificity of use of especially 
responsible power systems such as ship power plant and its 
functional subsystems require higher percentage values of 
correct classification than those shown in Tab. 4 . 

Another issue is empirical verification of the presented 
system. In the considered cases the set of data was relatively 
homogenous because it was obtained by means of algebraic 
relationships.  

In case of investigations carried out directly on a real 
object, obtained results may appear quite different , that 
obviously requires to carry out further investigations whose 
main condition is to realize in practice , as to its program 
solutions and instrumentation, the system discussed in this 
paper. 
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