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ABSTRACT

The paper describes a discrete-continuous method of dynamic system modelling. The presented approach is hybrid in
its nature, as it combines the advantages of spatial discretization methods with those of continuous system modelling
methods. In the proposed method, a three-dimensional system is discretised in two directions only, with the third
direction remaining continuous. The thus obtained discrete-continuous model is described by a set of coupled partial
differential equations, derived using the rigid finite element method (RFEM). For this purpose, firstly the general
differential equations are written. Then these equations are converted into difference equations. The derived equations,
expressed in matrix form, allow to create a global matrix for the whole system. They are solved using the distributed
transfer function method. The proposed approach is illustrated with the examples of a simple beam fixed at both ends

and a simply supported plate.
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INTRODUCTION

Continuous systems with spatially distributed parameters
are described by partial differential equations. However, exact
solutions to such equations exist only for a small class of
simple technical problems. For this reason, the continuous
structure is usually discretized and divided into small,
spatially lumped parameter elements. Such elements are
called finite elements and the method is well known as the
finite element method. A discrete model obtained in this way
is described by the set of ordinary differential equations. The
solutions to such equations pose no problem but the model
is approximate and its accuracy depends on the number of
finite elements. The greater their number, the more accurate
the model. However, there is an optimal division density,
above which the rounding errors start to seriously affect the
numerical calculation. Additionally, a very large number of
finite elements increases the order of the differential equation,
which is not convenient when designing, for instance, control

systems. Such a model also requires considerable computer
run time and huge memory capacity to obtain and store
numerical calculation results.

In the case of slender elements, such as: strings, bars and
beams, for which the analytical and exact solutions are well
known, it is better to use an accurate, continuous model
description.

Consequently, there is no universal approach which is both
accurate and applicable to a wide range of dynamic systems.
That is why the modelling methods of physical systems are
constantly being developed and improved.

The paper proposes a hybrid method of modelling that
combines the advantages of the spatial discretization methods
with those of continuous system modelling methods.

In the classical finite element method, the body is
discretized in all three spatial directions (Fig. 1a). In the
proposed method, the same body is discretized only in two
spatial directions (Fig. 1b), with one direction remaining
continuous. Such a division results in the appearance of
discrete-continuous elements, so-called prisms (Fig. 1b), with
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parameters distributed along one of the axes. Consequently,
the obtained elements are one-dimensional distributed
elements, described by second-order partial differential
equations. However, these equations also include terms related
to interactions between elements, as a result of which the
entire system is described by coupled second-order partial
differential equations.

finite element ¥

Fig. 1. Spatial discretization of 3D body:
a) conventional finite element method, b) proposed hybrid method

The obtained equations are solved by using the distributed
transfer function method [15, 16, 18]. This method enables to
obtain analytical or semi-analytical solutions for 1D and 3D
systems, respectively. A similar idea was considered in [12]
and [15]. However, in some aspects there are fundamental
differences. In [12] and [18] the body is treated as deformable
in the directions in which the discretization was made,
while in the proposed method it is treated as a rigid and
non-deformable solid in two discretization directions. This
approach has many advantages. Firstly, it makes it possible
to obtain a simple and clear system of partial differential
equations. Then, by using the modal decomposition method,
it is easy to determine the modal model and analyse it in the
time domain [1, 9, 10, 11]. In a simple way, the modal model
can be reduced to a low order model, which is convenient in
design and analysis of control systems [2, 3, 4]. The proposed
method has been applied in modelling 1D, 2D and 3D systems
(8, 10,12, 17] and may be used to modelling and solving many
practical engineering problems [6, 7].

GENERAL MODEL OF THE DISCRETE-
CONTINUOUS SYSTEM

In order to derive a general model of the discrete-continuous
system, let us consider two prisms, r and p, connected by
a spring-damping layer, k, continuous in the x direction, with
distributed parameters (Fig. 2a). The discretized model of the
analysed system is shown in Fig. 5. Each element has 6 degrees
of freedom expressed by means of general displacements. The
first three of them are translational displacements along the
X, X,, and x,-axes, while the remaining represent rotational
displacements around these axes:

g, =col(q, 1,9, 125915 G145 D155 Dro16) > (1)

q. = Coz(qr,p 425959495 9,.6) » (2)
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q,., =col(q,,, 9120914135 Drs1,4>Dri1 50 qr+1,6) > (3)
q, :COl(qp,laqp,z>qp,3aqp,4aqp,saqp,6)= (4)
a) k
r p
b)
Az
r-1

,/A'x X/— , ‘/ Sr1,,1

Fig. 2. General model of the analysed system:
a) discrete-continuous, b) discrete

For the r-th rigid element of the discrete model presented
in Fig. 2b, a system of ordinary differential equations was
written and verified by using the rigid finite element method
[5, 13, 14]. The obtained equations have the following form:

Joa=mg, +¢(q, =4, =¢0(dny =4, +
(=4, F i (S,059,0s =S i ps)
=1 (8,429, _Sp,k,qu,s)"' (5)
(85,059, 5=50,39,05) = Cii (S, 0G0 6 =S, 120G ,16)F

tc, (Sr,],_zqr,s 8,739 415 ) —C (Sr,j,qu',() 8,29 416 ),

fyz = méju +¢,(q,,— qi1,j2 )— Cia (qr+1.2 —Yq,2 )+
+¢, (g, - qp,z) = (S, 59,4 — Sp,k‘3qp‘4) +
+Cn (Sr,k.lqr.ﬁ _Sp.k,lqp,s) + (6)
+¢0(8 196 =S 11916) Cin (Sr,j,lqr,(» - Sp,»/‘,lqr+1,6) +

tc;, (Sp,j.S 914 =539 4 )+ Cia(S, 053G 4 = Sris 9,4 ),



.fV,} =mg,y+¢;5(q,5— 9.3 ) —C3 (qr+l,3 4.3 )+
+03(9,5=9,3) s (S0 s =S 409 pa) T
+C,s (Sp,k‘lq/)j =8, 519,5)+ (7)

_Ci,s(sr,i,lqr,s _Sr—lilqr—IS)_c'3(sr/'lqu =S, /'1qr+15)+

+Ci.3(5r,i,2qr,4 S 129 - 14)+C/3(Sr/2qr4 r+l/2qr+l4)
fr,4 = prIOXéI‘A +Ciy (%,4 _qr—1,4)_c_/',4 (qr+1,4 _qr,4)+
144,09, ) T30, 00,5 =S, 529 ,5)

Srk2Spi29pa )+
+Cn (Srz,k,3qr,4 =S k38 p k39 pa )+cis (Sr,k,3qp,2 -
=2 (S, 415,039 _Srk3spqup6)+

= s (S k1S a2Grs =S k28 piadps) T
=Ci2 (8,39, 2 =8,39,1,) Cia (Sr.j.Sqr,Z -
+Ci5 (Sr,i,z qr3 = Sri29-13 )+ Cis (Sr,j,qu,Z‘ -
FC3 (8,18 0G,m5 =801 Sri0d,5) T
TCs (Sr,j,Zsr-ﬁ-l,/',lqr-%-l,S =8, 18, 24,5)F
+C[3(S3[2qr4 =S, 1i28029,14)F
+C:2(9r13q74 S5 iadra) ¥
TCs (Sy,j,z Dijiks =Sr 2812914 )+
tc;, (srz,j,3 qra =S 351,39 414 )+
FC (8,83 e — S S riade) T

+C, (Sr‘j‘3sr+l,j,] 916 =S 15,3906 )s

2
T (840G —

S p3q,0)F

S, 39412 )+

; +
sr./,zqrﬂ,}) ®)

fr,s = pAyIOyéir,S tc s (qr,S - qr—l,S) —Cs (qr+],5 - qr,S) +
+e5(q,5— qp,S) €3S, 4,5 =9, ,3) T Cr 38k (qr,3 - qp.3)
+¢is (Srz,i,lqr,S =S, iS5+
+¢s (Srz,j,]qr,S =S i1Sre1 1915 )+
+ Ck,lsr.k.S(qr,l - qp,l) + ck,}(srz,k,lqr.S -
+¢, (Sf,k,_’sqr,S - Sr,l:,SSp,k,?sqp,S) +C38, 54 (G415
=3 (S, haSeinDra = SriiSpundpa) t
=i (S, 28, k36 =Sk 38 k2 ps) T 9)
+ Ci,lsr,f,z(‘]; 174, 1) +Ci8, 3(%1 qr+1,,1) +
+c, 1(Sr2i rs = So1i38515) T
+C;1(9r,3qr5 r,39r+1,3‘]r+15)+
3 (8,008, 01910 = S0 08, 00dr0) T
+¢5 (Sr,j,ylsr+17j,2qr+l,4 - SVV_/'Tlsf‘,j,qu,ll) +
008,025,316 = Sri25396) F

+¢jy (Sr+l,j,2sr,_/',3qr+l,6 - Sr,j,zsr,j,3qr,6)’

Sr,k,]sp,k,]qp,S) +

_qr,3)+

Jrs=PAZL G, s+ ¢ (4,6
+¢;55,,1(q,
+Co (qr.ﬁ - q[).6) =18, 5204,
~Cr1 (Sr,k,Zsr,k,Sqr,S Sk 25p k3 p.5 )
t+c, (srz,i,lqr,é =S 1itSrin 16 )+
+c; 2(53/1%6 TS S, 194, o)t
+Cl<l(srk2q» S k2Spradp6)t
08 41(q, 0 — qp.2 )—

_ckZ(Srklsrk3qr4_Srklspk3qp4)+ (10)
+CA2(Srqu: l/(lspqup()
=180y =400t CitSr 2 (G
(50138000915 = S,250039,5) T
+c;) (Sr,j,ZSr+],j,3qr+l,5 =58,25345 )+
€5 (81380 1910 = S 008,039,4) F
€508, 11801310 =S 705, 3904) T
+¢, (Sf,llzqr,() =S 12502916 )+

2
+¢ (SV,/',ZqV,G -5

- qr—l,(») —Cis (‘]m,e —q,6)t
4412 )— CiaSyin G0 =9,2)+
- qp,l) +

_qr,l)+

i 25ri1, .29 41,6 ),

where: f_is the general force applied to the r-th element
(excitation) in the x -axis direction (Fig. 2b); m is the mass of
the rigid finite element; p is the density of the rigid element; I
is the geometric, polar moment of inertia around the x_-axis;
Ax, Ay, Azare the elementary dimensions of the finite element
(Fig. 2b); g, , is the general displacement of the r-th element
in the x -axis direction; g, is the general displacement of
the p-th ‘element in the X, -axis direction; s, is the distance
between the body « and the spring- damplng element § in
the x -axis direction, and ¢ ;is the stiffness coefficient of the
sprlng element « in the X dlrectlon [5, 13, 14]:

EAyAz KGAxAz
Cin =€ = Ac Cra = Ay P

kGAyAz EAxAz
Cip=C;n = Ax s Cro = Ay >

KGAyAz _ kGAxAz
Ciz =Ci5= A k3 = Ay 5

Gl,, El, ()
Ciy=Ciy= s = s
ia =Cja Ax k4 Ay

EI, Gl,,
T vk Sl vt

)

EI EI,

o =60 = e =Ty

In Eq. (11): E is the Young’s modulus, G is the Kirchhoft
shear modulus, I, is the geometric moment of inertia of
the cross-section area perpendicular to the x -axis around
the x_-axis, and « is the numerical shape factor of the cross
section area.

The rigid finite element model described by Equations
(5)+(10) is next transformed to a discrete-continuous model.
We assume that the discretization is not performed in the x
direction. By putting:
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M
JRWAL 5’ (12)
=0

=—0, 5 ., =5

rii,l

=853 T Se2 TS5 T Skl TS pka

and (11) into Egs. (5)+(10), and dividing these equations by
Ax we obtain the following formulas:

Drvin —9ra 90 =910

f1 = PAVAZG,, — EAvAz —AX " Ar 4

KGAz KGAz
+ A_y(qr,l -q,)+ A_y(sr,k,Sqr,S = S,434,5) T (13)

KGAz
_A_y(sr,k,zqr,(: =8, k2dp6)
91292 )— (qr,Z —4q,12
Ax Ax
Ax

(

)

+

Jorn = PAVAZG, , — KGAYAz

EAz EAz
+ A_y(q"z =q,,) _A_y(sr,k,3qr,4 =S, 439p4) (1a)

+ KGAyAz (qrﬂ,é 46 )+ KGAyAz (qy,e 416
2 Ax 2 Ax

)s

(o _qr,3) _ (qr,3 _qr—l,s)
Ax Ax
Ax

Jws = PAYAZG,  — KGAYAz +

KGAz KGAz
Ay (q,5— qp,3) +A_y(sr,k,2qr,4 - sp,k,qu,4) + (15)

_ KGAyAz (qr+1.5 —4s )— KGAyAz (‘1;‘,5 “ 45
2 Ax 2 Ax

+

)b

Qg ~Dray  Y9ra ~ Y14
( Ar )—( Ax )
Ax

fw,4 = pIOxérA -Gl,, +

EI, KGAz
+ AvAx (q.4— q,,,4) + T(Sr,kﬂqrj _sr,k,qu,S) + (16)

2
(5752904 =S k2 s 29, 0) +

EAz

+ (s -8, 3 )+ £z (s -5 )
Ay Sk 3ra =S k35 p k3 p.a Ay S k3dp2 =Sk 3492)

-0
Ay 1 - .
Sos= pEyEA"AZ(sz + Azz)qhs +

9ri15 — 45 95 =915

(— =) —(— =)
- E[,— A A 4
1
12

=0
G—AxAz(AX® + Az?)

+

(4,5=4,5)+
AxAy ’ P (17)

+ KGAyAz Ax (qr,3 _qr—1,3)+ KGAy Az Ax(qm,s —43
Ax 2 Ax Ax 2 Ax
2 2
+ %[%} (qr,s + qr—1,5)+ %[%) (‘1/,5 + qr+l,5)+
KGAxAz
AyAx
KGAxAz

- (8, k280 k3916 =51 k35 pk 29p.6)>

AyAx

)+

KGAYAz
+ Ss(d =4, + Ay—Ax(Sr,k,??qr,S =8, k38 u3d,5) T
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=0

Az 1 L S
s = PEEAXA)’(Ay +AX)G, o+

9r16 ~ 496 96~ 4916
(— =)= (— =)
By —_ Ar 4
’ Ax
4 KGAyAz Ax (q;-,z 4,112 )+ KGAyAz Ax (qrfl,Z —4q,, )+
A 2 Ax A 2 Ax
1 —
E—zAzAxsz
+ Ay—Ax(q"G —q,6)~
KGAxAz (18)
_Ay—Axsr,k,Z(qr,l —q,)+
KGAxAz
- Ay—Ax (S k2813905 = Sk 2Spasdps)t
2
KGAYAz [ Ax
+ ﬁ[?} (96 +9,216)F
2
KGAYAz [ Ax
W[T] (G,6+ G016
KGAxAz
+ Ay—Ax (sr,k,zqr,6 =Sk 25pk29p.6 ),

wheref__is the distributed force along the x, -axis applied to
the r-th element (excitation) in the x_-axis direction (Fig. 2).

By assuming Ax->0, we can obtain the following partial
differential equations:

Swr=PAq,, — EAq:,I +

KGAz xGAz
+ > (4., —qp,1)+—Ay (S, 539,55 pusdps)+ (19)
KGAz
- Ay (8, 42r.6 =5 p429 ps )5
fvr,Z = pAqryz - KGAq:2 + KGAq:,G +
EAz EAz (20)
+_Ay (4, —qp,z)——Ay (S, 43Gra =139 p4)s
Sz =PAG, 5~ KGAq:"3 — KGA(];,S
KGAz KGAz (21)
& (4,5 —q,,,3)+—Ay (S, 52Gra =5 p120p8)s
fW,4 = pl()xér,li _G]()xq:4 +
EAZ* xGAz
" 12Ay (q'"’A _q”’4) + Ay (S'">k>2qr.3 _Sr,k,qu,3)+
KGAz , ,
+ Ay (7294 = Sr x2S pindpa) t
g (22)
EAz
+ (Srz,k,3qr,4 =S 135 p i3 pa )+

Ay

EAz
+ A_y(sr‘,k,qu,Z =S, k342 ),



fxr.s = pl_vxqr‘S - EI_vxq:S + KGAq:j + KGAqr,S

GAZ® KGAz

E(%,S - qp,5)+A_ysr,k,3 (qr,l - qp,l)+
KGAz

+A_y(5y2,k,3qy,5 _Sr,k,ssp,k,3qp,s)+ (23)
KGAz

(8142843916 =138 pi 2 p6)>
Ay

Sos =Pl G, s~ E[zqu"’,ﬁ - KGAq:.z + kGAq, ; +

KGAz kGAz  ,

- A_ysr,k,z (q,,— qpi ) +A_y (Sr.k,zqr,é S k25p k296 )+ (24)
KGAz

- Ay (5,525,439, =S k25 pk3ps ),

where:

1 1 . ,
A=AyAz lyx=EAyAZ3, 1x=EAsz3, G=%4q, 4 =%q-

In order to obtain the general form of Equations (19)+(24),
the following substitutions are applied:

KGAz EAz KGAz _EI,
Cod > Coka = Cy3 = > Oy = liMm——=0,
Ay Ay A A0 AyAx
¢, = lim El, _ —EAZ] cys = lim Gl,, _GAZ (25)
T asoppAr 124y 7T as0ApAY T 124y

Thus Equations (19)+(24) can be presented in the final
form:

Sor = pA.q.r,l _EAq:’,] +
+Cu (9r,1 —4q,. )+ Carl (5;‘,/(,3%./,5 —Spx39ps )+ (26)

= Cun (S, 429,6— Spk29p.6 ),

S = pAér,Z - KGAq:,z + KGAQ:,é +

(27)
tCyn (qr,Z 4y )— Cxk2 (Sr,k,Sqr,4 =S k3 p4 ).
Sou= p]0xér,4 - GIOX‘I:A +
FCua(qra =9, ) FCus3 0, 00G,5 =5, 429,5)+
+Cus (Sf.k,zqr,ét =S, 28 ph0d,a) (28)

2
(873G, 4— S k35 p k39 p.a )+ Cuns (Sr,k,3qp,z =5, 139, 2)>

Soa= p]0xér,4 - GIqu:’,4 +
teualqa— q[1.4) +Cu3 (8,409, 5 86295 )+
+Cus (Sf.k.zqr,él =S k25 pk2dpa )+ (29)

2
+Cyn (sr,k,,3qr,4 =S k35 p k3 pa )+ Cr2 (Sr,k,?yqp,z =S, k342 )

fxr,s = p]yxér,S _E]quzs + KGAq:,; + KGAqr,s +
+Cys (q,5— qps )+ Cor1Sr k3 (qr,l 4, )+
+cxk,l(sr2$k,3qrﬁ5 _sr,k$3sp$k,3qp,5)+ (30)

~Cal (Sr,k,zsr,k,qu,G =8, k35 p k2906 )

s = PG, _E[zxq:() - KGA‘]:,z + kGAq,  +
—CuiS,ia(g,, — q,. )= Coan (8,428,424, 5 — Sr k25 p k3 ps )+

2
1 (87409, 6— S k25 p k29 p6 ).

(D)

The above equations are obtained for prism r (connected
to prism p). However, by exchanging subscripts r <> p, we
can easily obtain appropriate equations related to prism p.

The general equations for the whole system, consisting
in this particular case of r and p elements, can be written in
the matrix form

Apg(x,1)+ Azoq”(xat) + Aloq,(x’t) + Ayq(x,0) = f(x,0) (32)

with the boundary conditions

M q(0,0)+ N ,q(1,0) =y,(1) , J=1.2 (33)
where:
r p
_ A A ;
0 0
0 0 0 0 o o 0 0 --- 0
0 0 o0 0o o0 -0
Ap, 0 a 0}7‘
0 0 o0 0o 0 --- 0
Ay = . (34)
0 0 -0
0 0 0 Ay, 0 o 0| FP
0 o o o0 -0
00 -0 0 0--0 0 0 - 0

or A, =diag[0,0,---,0,A4,,,,0,-- 50,4,,,,0,---,0],
where A, = diag[pA, pA, pA, pl,, PPl T,

A, can be obtained from the matrix A, by replacing the
parameters and dimensions of the r prism with appropriate

parameters of the p prism,

r P
. — ~ i
0 0 0 - 0

0

(35)

or Azo = dlag[oao’ : ”0’ Azo, 70,' : "07 Azop :07' : ’0] 9

where A, = diag[~EA,~kGA,~kGA,~Gl,, ~EI  ,~EI_].

yx
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A, can be obtained from matrix A, by replacing the

20p

parameters and dimensions of the r prism with appropriate

parameters of the p prism,

or A, = diag[0,0,---,0, 4,0,

10r =

S O O O o O

S ©O o o O

—kGA

r

~q

(=Bl

0

S O O O o O

0
0
— kGA
0
0

"0’ AI(]p ’09' : "0] 5 Where

p
A
0
0

o -

0
KGA
0

0
0
0

A, can be obtained from the matrix A, by replacing the

10p

parameters and dimensions of the r prism with the appropriate

parameters and dimensions of the p prism,

Ag=AitA,,

(37)

and
A1 0 0 0 Aiis Qkie
a0 0 rri24 0 0
4 = Arizs sy 0 0
ok >
arrk44 0 0
Ariss pse
| sym 166 |
At = Catr > Drs = CarSs s Dkie = “ComtSi2 5
Arky = Cokz s Arpa = CrpaSi3 s
Ark3s = Cuhz> Drppza = CuzSia
_ " 2 2
Arrjas = Coa T CoaSps T Cot3Sa s
_ + 2 —
Ariss = Coaks TCx1Sms s Appse = ~Cor1SmaSiwa s
arrk()() - kaé cxklsrkZ s
i1t 0 0 0 Qpr1s Dppris
0 Dypi22 0 Drpi2s 0 0
A _ 0 0 a/"plc 33 arpk 34 O O
wk T s
0 arpk42 arpk43 arpk44 0 0
st 0 0 0 Appss Apprse
| Drprot 0 0 0 Dipkes Drpkes |
Akt = “Cukt s Dpris = “Cxt1rS k3 > Drpic = Can1Spra »
Apr2 = Cuazs Approa = CaaSpia s
A3y = "Cuzs Apppas = CausSpias
Apkar = CaaSrs s Apas = “Co3Sra s Appras = “Crks ~ CoraSm3Spks ~ CarsSraSpra
st = "CoSms s Dprss = ~Coas ~ CorSusSprs > Dpise = Can1SmsSpka
el = CxrtSm2 s Dpkes = CarrSmaSpks > Dipres — Caks — CantSmaS pr2 >
g7
prk _Arpl( 5

where A,_has a form analogous to the stiffness matrix K,[5]

A is obtained from the matrix A by replacing indexes r
pp r7i
with p,

102

r

~q
0

0

p

A
0
0

(38)
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r P
_ A A }
0 0 0 0 0 0 0
00 0 0 0 0 0 0 -0
00 0 0 0 0 0 0 - 0
0 0 A4, 0 0 0 }r
0 0 0 0 0 0

A5= : : : (39)

00 0 0 0 0 0 0 -0
00 0 0 0 OASpO---O}P
0 0 0 0 0 0
00 0 0 0 0 0 0 - 0




and

0000 0 0
0000 0 0
0000 0 0

A =

"loooo 0o 0
0000 xG4 0
0000 0 &GA|

A_isobtained from the matrix A_ by replacing the parameters
and dimensions of the 7 prism with the appropriate parameters
and dimensions of the p prism.

The equations derived in the above way were then verified
in three steps. In the first step, continuous parts of Equations
(26)+(31) were compared to the appropriate components of the
well-known equations describing one-dimensional elements
with distributed parameters. As can be seen, the continuous
part (first line) of Equation (26) is the same as the equation
for alongitudinal bar element. In turn, the continuous parts
of Equations (27) and (31) are coupled together and are the
same as the Timoshenko beam model equations (vibrating
in the x -x, plane). Similarly, Equations (28) and (30) also
describe the Timoshenko beam model, but vibrating in the
perpendicular plane x -x,. Lastly, the continuous part of
Equation (29) expresses a torsion bar element.

In the second step, Equations (26)+(31) were written in
the matrix form and the obtained stiffness matrix A, (38) was
compared to the corresponding matrix K, which describes
the discrete model in the rigid finite element method [5, 13,
14]. As it turns out, the discrete parts of Equations (26)+(31)
are analogous to those in the rigid finite element method [5].
In the last step, easy examples were used and presented in
this paper, some of which have analytical solutions and are
thus easily verifiable.

A global model for the whole system is built in the same
way as the finite element method (FEM) model. Global
matrices A ,, A, , A, include sub-matrices of each prism
element, located on a main diagonal. Matrix A  is the sum of
all the prism element stiffness matrices in the global system.

To solve the partial differential equation (32), the
distributed transfer function method [15, 16, 18] is used. This
method gives semi-analytical results for the tree-dimensional
structure. To use it, Equation (32) is to be subjected to Laplace
transformation, after which it takes the form

2

J d _ -
(AOZSZ+AZOaT+Al()g+AOO)q(x5S):f(xas) (40)

with the boundary conditions

M g(0.5)+ N ,g(.5)=7,(s) j=1.2, (41)
where:

q(e,s), f(o,5) denote the Laplace transformation of the

corresponding functions q(s,t), f(s,t), respectively,and M s IV ;
are the operator matrices formed from the matrices M, N,

by replacing the time-derivative operators 0/0 t and 0*/0t*
with s and s?, respectively.

Equation (40) can be transformed into the set of first-order
equations (state equations):

i11()6, s)=F(s)p(x,s)+ u(x,s) (42)
ox

M (s)n(0,5)+ N(s)n(l,s) =y(s) (43)
where:

q(x,s)
1, 5) = {"l(”)} - [M] ‘
”2 (xv S) ax

] (R E— 1
- —A;é(A02S2+A00) : _Az_éAlo ’

— ”l(x’s) _ ____0____ M= M1 Mz
u(x,s) = S ey e L I R
_ 0 0 _ 71(5)

N{Nl Nj' y(s){ms)]

The solution to Equation (42) can be presented as [12, 18]

n(x,s) = fG(x, &, u(E,s)dE + H(x,s)y(s) (44)
where:
G(x,8,5)=

~ eF(s)X[M(S)eF(s)xl + N(S)eF(s)x; ]—1 M(S)eF(s)(xrf), 5 <x (45)
_ eF(.Y)X[M(S)eF(»Y)X\ + ]\/‘(S)e':(x)x2 ]7I N(S)ep(y)()cr:) 5 é: 2x

H(x,s)=e" " [M(s5)e" " + N(s)e" =] (46)

If we denote:

_ Gll(xsf’s) Glz(x9§>S)
G(x’ g’ S) - |:G21(x5 fa S) GZZ (X, 57 S):| ’ (47)
H(x’s)z{Hll(x’S) le(x,s)}’ (48)
H, (x,s) Hy(x,s)

the solution to Eq. (44) can be written as

W)=Y [6 (e, EdE+ Y H, (.0,(5).  (49)

J=1 Xy

i=1,2, or

1,009 = [Go (&9 AR FE )+ 3 H, (v.5)7,(5) 11,2 (50)

Rl
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where the expression

(51)

_|GL(x.8,5) 4y
Koe.= |:Gzz (x,¢, S)AzJ

is the matrix of transfer function between the i-th output
(row) and the j-th input (column). In the case of a force
concentrated at point x, the relation (50) can be written as

1,5.5)= [ G (0,5 A F(E,9)0E —x)dE+ Y H, (x,5)y (5) =12 (52)

and after integrating

1(508) = G (5o ) ASL T (0. ) + S H, (xa)y, (), =12, (53)

=
Assuming that the boundary conditions y(s)=0, from Eq.
(53) we obtain the equation

1,(x,5) = G, (x,%,,5) Ay £ (X).5) . (54)

The condition p(s)=0 occurs in most cases. It means that
the external force does not act on beam supports [12].

In the specific case, when the excitation point £ = 0.1 and
the response observation point x=0.4 and y(s)=0, the transfer
function of the distributed parameter system is calculated by
putting corresponding submatrices of the relation (45) into
Eq. (51). In this way we obtain:

a) foré<x

K. (s)=e" " [M(s)e" " + N(s)e" "' M(s)e" ™' 45 (55)
b) for &> x
K§<X(S) _ _eF(.v)»0.4[M(S)6F(.Y).o " N(S)eF(_\v)»]]—lM(S)eF(.v)»0.9A;(; (56)

After putting s=jw into the transfer functions (55) and
(56), the frequency characteristics can be calculated and the
eigenvalues of the system may be determined.

FIRST EXAMPLE OF METHOD
APPLICATION

As the first example, let us consider a simple beam fixed
at both ends (Fig. 3) with the following data: E = 210" Pa,
G =8:10" Pa, p =8000 kg/m?, Ay=0.25 m, Az=0.25 m, I=1 m,
v=0.25, k =1.

P=1 (force)

h=0.25

X1

=04 . %
displacement
vr I=1

Fig. 3. Fixed beam

=0.25
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The calculations were performed for two cases. In the
first case the beam was treated as a single prism, description
of which comes down to the coupled two equations of the
Timoshenko beam model, Egs. (27) and (31), or (28) and (30)
without discrete parts. In the second case the beam is divided
into four prisms (Fig. 4) and four distributed spring elements.
Each prism has three degrees of freedom: displacements along
the x, and x,-axes, and angular displacement around the
X,-axis.

The stiftness coeflicients of the distributed spring layers
are calculated using the formulas:

KGAz GAZ®
Cail =€z =Crq1 =Chs3 :E, Cs =Cras = 212 Ay

KGAy EAy
Co1 =C31 =Cip =Ci3n = Az Cos =Cus =0, €3 =Cyy =E

and the fixing coordinates:

Ay
S T 8342 = 8122 T 8302 7 )
4
_ _ _ __ N
$202 TS442 T 8232 T S432 = ’
4
Az
Ky =g =9 =g e ——
13 = 5203 = 8123 T 5233 )
4
_ _ _ Az
8343 = 8443 T 8323 =S435~ 2

a) Ay

b)

3 Cu 4
)
1 2
X3
X2
3 4 £

Fig. 4. Discrete model of beam: a) primary division, b, c) secondary division



The matrices of boundary conditions for the system divided
into four prisms have the form:
012X12j|
012><12

M — |:IIZ><12 012><12j| , N — |:012><12
012><12 12x12 112><12

For the discrete-continuous model prepared in the above
way, the frequency characteristics were calculated (Fig. 5) for
the harmonic force excitation with amplitude equal to one
and acting at prism No. 2, at point £=0.1 m. The displacement
output signal was observed at prism No. 4, at the x=0.4 m
point. The obtained characteristics were compared with those
developed by using the finite element method and the ANSYS
system (Fig. 5). The calculated natural frequencies are given
in Table 1.

-100
-120 [ = discrete-continuous method 1 prism (Timoshenko beam model)]]
-140 [ — discrete-continuous method 4 prisms | ‘
& oo I [ LT
9 -180 1
@ 200 J X ALk i
E 220 L \ il = N . s SR )
'S -240 ) \I’
g 20 il i I
'300 [ - FEM - 2x2x5=20 finite elements
:320 [ — FEM - 20x20x80=32000 finite elements

0 0.5 1 1.5 2 25 3 3.5 4
frequency [rad/s] x 10°

Fig. 5. Frequency characteristics

Table 1. Natural frequencies of the analysed beam [rad/s]

Proposed method FEM model oy Wi;}(; ’rze(t;?é?)ne(i::l‘i), fo/Eo]M ikl
No.
1 prism 4 prisms (22>52:1§ (230;520%Xﬁg 1 prism 4 prisms 2Xx2x5
1 6211.15 6191.7 6164.68 6080.93 2.14 1.8 1.5
2 13848.36 13568.31 13682.26 13381.3 3.5 14 2.2
3 22763.9 21184.5 22817.3 21901.29 4 3.2 4.1
4 32186.47 29587.12 33288.92 30888.13 4.2 4.2 7.7
5 41982.17 38913.2 42763.4 40216.78 4.4 3.2 6.3
6 47172.88 41321.6 45807.18 43225.17 9.1 4.4 59

The discrete FEM model used as the reference consist of
32000 twenty-node hexahedron elements.

The characteristics in Fig. 5 show that the first two
frequencies of the proposed discrete-continuous model,
consisting of 4 prisms, and the reference FEM model with
32000 elements are very similar and differ by about 1.8
and 1.4% respectively (Table 1). In turn, the corresponding
frequencies of the FEM model consisting of 20 finite elements
differ respectively by about 1.5 and 2.2%.

While the first frequency of the discrete-continuous
model is slightly higher than the corresponding frequency
of the FEM model with 20 elements, the second frequency
is much lower and closer to the frequency of the reference
FEM model (32000 elements). As the frequency grows, the
discrete-continuous model appears to be more precise than
the 20- element FEM model, although it consists only of
four prisms.

The model consisting of one prism, which is equivalent to
the Timoshenko beam model, turns out to be comparable with

the 20 element FEM model. Although the first two frequencies
of the Timoshenko beam model are less accurate, the next
three frequencies are more accurate. But both these models
are not accurate enough.

When the equivalent diameter d of the beam is greater
than 1/(2Jz ), we should use a higher-density mesh or, for
example, the here proposed discrete-continuous method of
modelling.

SECOND EXAMPLE OF METHOD
APPLICATION

As the second illustrative example, let us consider a simply
supported plate along its outline (Fig. 6a) with the following
data: E = 2:10" Pa, G = 8:10" Pa, p = 810" kg/m?, v = 0.25,
k=1a=1m,b=0.6m,h=0.03m.

Comparative calculations were performed after
implementing the proposed discrete-continuous method in
the MATHEMATICA system and using the finite element
method in the ANSYS system. The calculations were made
for different numbers of prisms and finite elements. A sample
discrete model of plate divided into twelve prisms is shown
in Fig. 6. All prisms are connected via spring layers with
distributed parameters. The stiffness coeflicients of these
layers were calculated from the following equations (25):

_EA

_ KGAz EAZ’ GAZ®
Ay’

= ,cr = ’cx =
Ay M 12ay7 TP 124y

S Cus

and are the same for spring layers from c_ to c_,. For the
supports along the plate outline, the stiffness coeflicients
were calculated using the following formulas: ¢ , = 5- ¢
Coos = 5 Caz Croa = 0, Coos = 0.

Each prism has three degrees of freedom, which are:
translational displacement along the x,-axis and angular
displacements around the x, and x,-axes.

a)

x12°

X3

b)

X2

N

lines of
physical division

[ QIR R

X distributed parameter spring element
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o

X2

Ay M2 FAz
N =

d) support stiffness coefficients

e

Cx0 Cx1 Cx2

L HY-
s J1 ] e

s112=Ay/4 S210=-Ay/2

Cx11 Cxo

HT TR

Fig. 6. The analysed plate: a) general scheme, b) primary virtual division,
c) secondary physical division, d) equivalent scheme

The frequency characteristics were calculated for the
harmonic force excitation having the amplitude equal to
one and acting at the point with coordinates: x,=0.4 m and
x,=0.2 m. The displacement output signal was observed at the
same point. The received characteristics were compared with
those obtained by using the finite element method and the
ANSYS system, and also with the exact frequencies calculated
from the relation

(Y (Y]] Ew
i j)=7 (aj +[bj 120-v)ph (57)

All frequency values are compared in Table 2.

a -80,
) -100) [ — discrete-continuous method 4 prisms |
l L
—-120
i ool L
§jgg = ‘V A ] A 5 '{'\,
E 2200 HAIRYAR' “?’\/f \?\ P\ AV
8220 e — Y i Y \?HY T
£ ‘ : Lf
'g‘ég‘\ ---finite element method 2x30x50=3000 elements ||

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
frequency [rad/s]

-80
b) 100 | [— discrete-continuous method 7 prisms |
—-120
D 140 | A | | | |
s . W |
-E_ZOO "V \‘." l\"\/\“/V | V \“7\ / N '/| W7 |
o I L | I 1 1] A S A I
g ‘ L il i
-2401{——-finite element method 2x30x50=3000 elements |i"|

-260
0 2000 4000 6000 8000 10000 1200014000 16000 18000

frequency [rad/s]

C -80 T T T ‘ ‘
) -100 [— discrete-continuous method 10 prisms]
-120
-140 | L | l Ly
LA A \
-180 A ININAN / _ /,\ S
-200 Y - Y NN\
-220 A i | Y ‘.l ",r'

N
[«2]
o
™~~~
o
/

tude [dB]

magni

| |
~2401"finite element method 2x30x50=3000 elements]!

-260
0 2000 4000 6000 8000 10000 1200014000 16000 18000
frequency [rad/s]
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; ; ; ; ;
[— discrete-continuous method 10 prisms |

]

AN

N

o
|

Lo
AL AR -
S IN AN A S

AR \w/ fl/ Y

reuiing

160 —"\
A

/

-200 |

—

N
NS
=]

®©
E 240\ [ finite element method 1x3x5=15 elements ||

0 2000 4000 6000 8000 10000 1200014000 16000 18000
frequency [rad/s]

Fig. 7. Frequency characteristics

Table 2. Comparison of natural frequencies

Error in reference
NII\?SC t—r;};a;:cy Proposed method FEM t(()sl(:)](’.)l(\)/lerlrel;%el
& 4 prisms | 7 prisms |10 prisms| (11);353 (23>B30%><6510) 10 prisms 1()1(53}3()5
1 1692 2130.35 | 1812.36 | 1632.08 | 1847.63 1633.88 0.1 13.08
2 3036 4003.84 | 3274.93 | 2916.00 | 3468.88 | 2907.732 0.28 19.29
3 5276 6042.83 | 5359.35 | 4996.67 | 7598.88 | 5039.429 0.84 50.78
4 5425 6314.78 | 5411.67 | 5121.91 | 9417.23 5219.819 1.87 80.41
5 6769 8727.93" | 7117.69 | 6417.73 | 10717.23 6427.07 0.14 66.75
6 8412 9259.70 | 8263.06 | 7850.63 | 14031.61 | 7987.185 1.7 75.67
7 9009 9305.27 | 9571.59 | 8487.07 | 19156.8 8459.681 0.32 126.44
8 11648 |12852.87|10958.05|10754.84| 23491.57 | 11017.57 2.38 113.21

The obtained results prove that the proposed method is
effective and more accurate than the finite element method.
Figure 7d and Table 2 show that for a smaller number of
elements (10 prisms) the presented method gives results
closer to the accurate values than the finite element method
with a larger number of elements (15 elements). The relative
error of the proposed method with respect to the reference
finite element method model with 3000 elements is smaller
than that of the finite element model with a large number of
elements (15 elements), Table 2.

CONCLUSIONS

The paper presents a hybrid discrete-continuous method
of modelling. For the proposed approach, general partial
differential equations were derived. These equations were
verified and then written in a formalized matrix form, which
is very convenient in application to numerical computations.
A beam fixed at both ends and a simply supported plate were
used to illustrate the general concept. The proposed method
is described in a general form and can be also easily applied
to other cases, not presented in this paper, including simply
supported or one side fixed beams, as well as rectangular
plates with different boundary conditions.

The performed numerical calculations and computer
simulations showed that the proposed method, especially in
the higher frequency range, gives more accurate results than
the finite element method with the same or similar number
of elements. In addition, even at a small number of elements,
it gives a very good model accuracy and high convergence of
numerical calculation results. The proposed method has been
proved to be efficient and applicable to discrete-continuous
modelling of dynamic systems. It can be applied especially
to the analysis, simulation and numerical calculations of



nontypical elements or systems requiring high accuracy.
Semi-analytical solutions make the proposed method more
accurate than the finite element method, especially in
predicting high-frequency dynamics.
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