
POLISH MARITIME RESEARCH, No 3/2017 3

POLISH MARITIME RESEARCH 3 (95) 2017 Vol. 24; pp. 3-14
10.1515/pomr-2017-0085

COMPARISON OF FUZZY SYSTEM WITH NEURAL AGGREGATION
FSNA WITH CLASSICAL TSK FUZZY SYSTEM IN ANTI-COLLISION

PROBLEM OF USV

Piotr Szymak
Polish Naval Academy, Poland

ABSTRACT

The paper presents the research whose the main goal was to compare a new Fuzzy System with Neural Aggregation
of fuzzy rules FSNA with a classical Takagi-Sugeno-Kanga TSK fuzzy system in an anti-collision problem of Unmanned
Surface Vehicle USV. Both systems the FSNA and the TSK were learned by means of Cooperative Co-evolutionary
Genetic Algorithm with Indirect Neural Encoding CCGA-INE.
The paper includes an introduction to the subject, a description of the new FSNA and the tuning method CCGA-INE,
and at the end, numerical research results with a summary. The research includes comparison of the FSNA with
the classical TSK system in the anti-collision problem of the USV.

Keywords: neuro-fuzzy system,neural aggregation of fuzzy rules,cooperative co-evolution,anti-collision of USV

INTRODUCTION

Unmanned Surface Vehicles (USVs) are vessels which
can perform many different missions both civilian and
military. Civilian usage of USVs is mainly connected with
different inspections of underwater environment, especially
for oceanography and marine biology purposes. Military
applications of USVs are focused on mine countermeasure,
anti-submarine warfare and Intelligence, Surveillance and
Reconnaissance (ISR) tasks.

USVs can be operated remotely and/or autonomously. USVs
moving in a marine environment are exposed to collisions
with stationary obstacles as well as moving obstacles, mainly
other vessels occurring in USV’s operation area. Therefore,
a significant problem appearing in the USV motion is
counteracting possible collisions [5,7,20]. Software responsible
for the anti-collision usually cooperates with navigation

devices such as: a radar system, an AIS receiver, GPS, a speed
log, a gyrocompass, etc., and actuators such as: a propeller, a
rudder, and additionally cooperates with software for route
planning [14] and an electronic navigation map [9].

In the paper, the anti-collision problem is considered as
a problem of selecting proper trajectory (i.e. desired waypoints
achieved in desired time) for the USV operating in an area
with other vessels which can be located on a collision course
with the USV’s course. Taking into account control task for
the USV, proper changes of a course and a velocity have to be
generated for avoiding the collision during motion of USV
from starting to target position.

To resolve the USV anti-collision problem, an innovative
Fuzzy System with Neural Aggregation of fuzzy rules (FSNA)
was proposed. The FSNA was compared with the classical TSK
fuzzy system. To tune the structure and parameters of both
systems, Cooperative Co-evolutionary Genetic Algorithm

POLISH MARITIME RESEARCH, No 3/20174

with Indirect Neural Encoding (CCGA-INE) was applied.
To simulate the USV and other vessels motion, Control-
Oriented Model of motion of Unmanned Marine Vehicle
(COMUV) was used. A detailed description of the COMUV
was included in [13]. The model parameters were applied for
USV Edredon (Fig. 1) [6,16].

Fig. 1. Unmanned Surface Vehicle Edredon [6]

The Edredon was built by a consortium, whose leader was
the Polish Naval Academy [6]. The vehicle can be controlled
remotely from a Mobile Command Centre (MCC) (Fig. 2),
or can be controlled locally from on board of the vehicle. As
can be seen in Fig. 2, the MCC simulates an operator console
located aboard USV with a classical steering wheel and a set
of shifters and switches. To visualize the space around the
USV, a set of three monitors that receive signals from daylight
and thermal cameras, installed aboard USV is used.

Fig 2. Mobile Control Centre of USV Edredon [6]

During previous research devoted to the anti-collision
system of the USV Edredon [15], the classical TSK system tuned
by the new CCGA-INE method was used. The anti-collision
problem was defined by 30 scenarios including trajectories
of ten other vessels, which can be on collision course with
the USV. The achieved TSK system successfully (without
collision) controlled the USV in all the 30 collision scenarios
[15]. Then, the 30 more complicated scenarios were created
for testing the TSK anti-collision system. Unfortunately,
the tests with 30 additional more complicated scenarios did
not end successfully. Therefore, in this paper, an improved
FSNA system was used to solve the anti-collision problem
defined by the 60 scenarios (initial simpler 30 scenarios
and additional more complicated 30 scenarios). Moreover,
this paper included comparison of working TSK and FSNA
anti-collision systems. Both systems were verified by means
of 30 validating scenarios. It is worth underlying that the
anti-collision problem defined by 60 scenarios is more difficult
than the same problem defined by 30 scenarios. The first
30 scenarios are simpler and the next 30 scenarios are more
complicated. The complexity is connected with trajectories
of the other ships. The trajectory selection influences a greater
number of possible collision situations.

The proposed FSNA is based on the classical TSK fuzzy
system with two improvements. The first one is based on using
an artificial neural network instead of classical operator for
calculation of crisp value in the fuzzy system output (called
in this paper fuzzy rules aggregation). Based on the literature
[18], the FSNA can be classified as a concurrent neuro-fuzzy
system. The second improvement depends on integration
of the fuzzy rules and fuzzy sets. Both improvements allow
to introduce more nonlinearity in the fuzzy system and
consequently to achieve desired solution.

The CCGA-INE is based on Cooperative Coevolution
Genetic Algorithm CCGA proposed by Potter and De Jong
[11]. It was improved by adding indirect encoding of the fuzzy
system by means of an artificial neural network. The CCGA
depends on an evolution of cooperating subcomponents of
an overall solution. The subcomponents evolve in different
populations of species, which have to cooperate to achieve
a desired solution.

The paper is as follows: Section 2 includes details of the
Fuzzy System with Neural Aggregation (FSNA). Section 3
explains details of tuning method of FSNA called Cooperative
Co-evolutionary Genetic Algorithm with Indirect Neural
Encoding (CCGA-INE). Section 4 includes description of the
anti-collision problem used as a testbed and section 5 presents
the selected numerical research. The last 6th section includes
a summary of the research. Detailed description of the
classical TSK system for anti-collision problem is presented
in [15,17], and control-oriented model of the motion used for
the USV is the same, which was applied for an underwater
vehicle (UV) [13]. The motion of UV is considered in 6 degrees
of freedom, while the motion of USV usually in 3 degrees
of freedom. Therefore, the UV model is useful to simulate
motion of USV.

POLISH MARITIME RESEARCH, No 3/2017 5

DESCRIPTION OF FSNA

ASSUMPTIONS

The new FSNA is based on the classical TSK fuzzy system
proposed in [17]. The TSK system is well known and often
used especially in control applications. Comparing to another
a classical Mamdani type fuzzy system [8], the TSK system is
computationally simpler but similarly efficient [4].

Comparing to the TSK system, following assumptions
were made for the FSNA:
1)	 using a logical or an algebraic product for a rules’

prerequisites aggregation (a conjunction of prerequisites),
2)	 input variables represented by gaussian membership

functions (two parameters for each fuzzy set) and output
variables represented by singletons (one parameter for
each rule’s consequent).
Modifications that led to the creation of the FSNA are as

follows:
1)	 integration of the fuzzy sets and rules (the system is in the

form of a matrix of integrated fuzzy sets and rules),
2)	using an artificial neural network for the aggregation

of the fuzzy rules instead of e.g. weighted sum [1].
The modifications are described in more details in the

following subsections.

MATRIX OF INTEGRATED FUZZY SETS AND RULES

In the classical TSK system, each variable is defined by the
specified number of fuzzy sets (represented by membership
functions). The fuzzy sets are usually set by an expert. If the
fuzzy sets are tuned automatically, usually, the expert specifies
the number of fuzzy sets for each variable. In the TSK system,
each rule’s prerequisite can operate on one fuzzy set selected
from all the fuzzy sets defined for the variable. In this case,
a prerequisite is defined by a linguistic expression, e.g.:

X1 is HIGH

(here: X1 is an input, HIGH determines one of the fuzzy sets
of input X1).

In the FSNA, fuzzy sets are integrated with the fuzzy rules.
It means that instead of using linguistic expressions each
prerequisite is defined by parameters of the fuzzy set (in the
case of gaussian membership function, two parameters define
this function: an expected value and a variance). In the FSNA,
the same prerequisite (relating to the same input) in different
rules can operate on different fuzzy sets. In an extreme FSNA
case, each variable is defined by the number of fuzzy sets
equal to the number of fuzzy rules. This approach is very
useful in the situation, when the rules or all the fuzzy system
parameters are tuned in an automatic way, e.g. by means of
an evolution. In this case, division of an input-output space
is only limited by the number of fuzzy rules, and the tuning

method decides on the number (and parameters) of fuzzy
sets needed to represent a specified variable.

In the research presented in the following section, the
following representation of the FSNA in the form of a matrix
of integrated fuzzy sets and rules VBI was applied:

VBI =

n

mk

nnn

m

nn

mkm

mkm

n
nn

nnn
n

nn

nnn

nnn

rrrrrr

rrrrrr
rrrrrr

......
...

......

......

121111211

22
22

2
21

2
1

2
12

2
11

11
22

1
21

1
1

1
12

1
11

 (1)

where n
kmr is m-th parameter of fuzzy set or singleton of k-th

input or the output variable in n-th fuzzy rule, nk is the
number of input and output variables, nm is the maximal
number of parameters describing a fuzzy set or a singleton,
and nn is the number of fuzzy rules.

In the matrix VBI, some elements can be zero. In this case,
appropriate prerequisites or conclusions will be removed, e.g.
if the first and second elements in the first row are equal to
zero, it means that prerequisite relating to the first input is
removed in the first rule.

NEURAL AGGREGATION OF RULES

The next step of modification of the TSK fuzzy system is
to apply an artificial neural network for the aggregation of
implications of fuzzy rules. In the classical TSK system, the
conclusion of i-th implication of a fuzzy rule is in the form
of a functional dependence of the rule’s predecessors. In this
case, the aggregation of the implications is typically calculated
using a weighted sum of individual rules [1].

Often (in engineering practice), due to the need of reduction
the number of parameters necessary to tune and, consequently,
to simplify the system, the functional dependence of the
rule’s predecessors is simplified into singletons. This leads to
a reduction of a non-linearity of the system, which in turn
may lead to the inability to match a problem. The possibility
of using an artificial neural network to aggregate rule outputs,
results mainly from the fact that they are successfully used to
approximate non-linear functions [10]. Thus, it seems that the
application of a neural network, in this case, is more flexible
in obtaining a satisfactory solution fitted to the nonlinear
control object.

It was assumed that an artificial neural network in the
FSNA performs the duty of rule aggregation, i.e. inputs of the
network are weights of rules wi, and weights are determined
using a logical or an algebraic product. Weights are calculated
based on the membership function of the individual fragments
of each rule’s predecessor. In this case, the output of the whole
TSK system is a crisp value of the neural network output y. The
network architecture is always related to a number of rules
(a number of neural network inputs) and generally a solved
problem (internal network topology, weights and types of an
activation function).

POLISH MARITIME RESEARCH, No 3/20176

Fig. 3 shows the exemplary FSNA structure formed by
a connection of a neural network with a TSK fuzzy system.
In Fig. 3, the i-th neuron of the network is represented by Ni.

In the research presented in the following part of the
paper, a feed-forward artificial neural network was applied
for the aggregation of fuzzy rules [10]. The architecture of
the network was determinated by the evolutionary method
CCGA-INE.

Fig. 3. The connection of neural network with TSK fuzzy system
for the aggregation of fuzzy rules (Ni defines the i-th neuron)

The method of encoding an artificial neural network and its
tuning by means of evolution is described in the next section.

DESCRIPTION OF CCGA-INE

CO-EVOLUTION

Co-evolution is a specific type of closely related species
evolution. In the basic evolutionary algorithm, the process
of evolution is seen as an attempt to adapt a population
of individuals to a specific environment. Meanwhile, in the
co-evolutionary approach, the process of co-evolution is
seen as an attempt to adapt the population (or a subgroup
of individuals from the population) to the specific environment
that is affected by a population of another species (or another
subgroup of individuals from the population). Usually, in
the co-evolution, a complex solution is divided into sub-
component solutions to evolve independently, i.e. there are
many populations of individuals (multiple species), wherein
each population encodes one sub-component solution.

A good example of co-evolution comes from the natural
world in the form of relation between a predator and prey. The
predator hunting the prey eliminates the weaker individuals
from the population of prey. It causes those individuals which
survive to have better features that can be transferred to
their offspring. Similarly, the predators which achieve “worst
results” in catching preys, have also less chance to transfer
features to their offspring.

OVERVIEW OF CCGA

In general, a genetic algorithm (GA) is a heuristic search
that mimics the process of natural selection. The GA is based
on an iterative evolutionary procedure involving selection
of genotypes for reproduction based on their fitness, and
then introducing genetically changed (by means of mutation,
crossover and other genetic operators) offspring into the
next population. The procedure is finished after achieving
satisfactory genotypes (a set of features of an individual)
which correspond to phenotypes with high fitness function
(the individual from a population) [3].

The CCGA is a specific Cooperative Coevolution Genetic
Algorithm proposed by Potter and De Jong [11]. Generally, the
CCGA solution is divided into sub-components that evolve
in separate populations. There is no possibility of exchanging
genetic information between populations of separate species,
but individuals of different populations have to work together
to achieve a satisfactory overall solution. Division into the
sub-components is carried out by the following method.
Initially, the solution is encoded in a single chromosome,
which evolves in a single population. If the evolution of this
population, after a specified number of iterations, does not
lead to a satisfactory solution, then the next population is
created, and next two populations evolve, etc. Sometimes,
the CCGA algorithm may find that a particular species
(population) does not make a significant contribution to
the overall solution. In this case, the population is removed
from the evolutionary algorithm. In the CCGA, to evaluate
the overall solution a single individual of the first population
must be connected with individual from each of the other
populations [11].

When evaluating an individual from the given population,
it is always combined with the fittest individual from each
of the other populations, based on the evaluation (a fitness
function) obtained in the previous iteration of an evolutionary
algorithm (EA). During the first iteration of the EA, an
individual is combined with the randomly selected individual
from each of the other populations.

GENERAL IDEA OF CCGA-INE

Because the fuzzy system is described by a large number of
parameters, the chromosomes coding these parameters should
be very long. Evolution of long chromosomes is connected
with complicated calculations, and in consequence, problems
with achieving a final solution within assumed finite time. Due
to potentially long chromosomes for the system defined by
the large number of parameters, the indirect encoding of the
fuzzy system is proposed. In the indirect encoding method,
information from the chromosomes is used to generate other
systems (neural network, nonlinear function, etc.), which in
turn generates parameters of the FSNA. Such way of encoding
is applied to create large fuzzy systems using relatively short
chromosomes.

Generally, in the CCGA-INE a single chromosome encodes
a neural network called coding network, defined by a Coding

POLISH MARITIME RESEARCH, No 3/2017 7

Neural Network Definition Matrix cNDM [12], while the
coding network or networks encode the FSNA (i.e. coding
networks fills elements of matrices representing this system).
In the case of a neural network for aggregation of fuzzy rules,
coding networks generate elements of Aggregation Neural
Network Definition Matrix aNDM, defining structure and
parameters of the aggregation network. It should be noted
that in the CCGA many populations can evolve, i.e. many
chromosomes can generate many coding networks (Fig. 4).
For many coding networks, each element of the matrices
representing the FSNA is generated by one of the coding
networks according to the algorithm described in the
following subsection.

Figure 4. Generation of the FSNA using CCGA-INE

In conclusion, it should be noted that the task of CCGA-
INE is to find the best structure and parameters of coding
neural networks (one or several depending on the progress
of co-evolution) which, in turn, encode integrated matrix of
fuzzy sets and rules VBI and a matrix defining an artificial
neural network for aggregation of fuzzy rules aNDM.

GENERATION OF CODING AND AGGREGATING
NEURAL NETWORKS

Fig. 5 shows a method for generating a coding neural
network (defined by cNDM) [12] using the information stored
in the chromosome, consisting of four components. Each
component is composed of 7 bits, i.e. the whole chromosome
is built from 28 bits. During the research, co-evolution
produced chromosomes consisting of four to more than thirty
components, i.e. chromosomes consisting of more than two
hundred bits. The number of components is depended on the
complexity of the problem and the co-evolution. Division into
components is a decomposition of the problem. Always the
first component of each chromosome is considered as a string
of bits, while the next components represent integer values

(scaled to real values), which are subsequent elements of the
matrix. In the illustrated example (Fig. 5), the first component
of the chromosome determines the topology of the neural
network by indicating the elements of matrix cNDM, which
should be reset (white boxes), and other which should adopt
the values determined by the successive components of the
chromosome c1, c2 and c3 (black boxes).

Consecutive bits included in component „topology”
determine if the following elements of the matrix (beginning
from the first column and row, and ending on the last row and
column) are zero or non-zero (Fig. 5). Bit string „topology” is
too short to determine all the elements of the matrix, therefore,
the string is repeated, i.e. after the last bit is the first bit of the
same string, then second bit, etc., until all the elements are
calculated. The bit which has a zero value determines zero
value of the relating element in the matrix. This element is
illustrated by white boxes in the table in Fig. 5. Bit which has
value “1” determines non-zero value of the relating element
in the matrix. The non-zero element is marked by grey boxes
in the table in Fig. 5. The precise values of non-zero elements
are determined by other components of the chromosome
„coefficient no. 1”, „coefficient no. 2” and „coefficient no. 3”.
Assignment of values c1, c2 and c3 for successive elements of
matrix cNDM is carried out according to the same principle
as it is used for the bits of the component „topology”.

Figure 5. Generation of matrix cNDM by the chromosome consisting
of four components

Matrix cNDM shown in Fig. 5 has n rows and n + 2
columns, where n is the number of neurons in the network
layers, sequentially: input, hidden and output. Elements of
matrix cNDM from the first element to the element of n-th
row and n-th column determine the weights of connections
between neurons. Column n + 2 determines type of the
activation function, and the column n + 1 is a bias, i.e. a
constant added to the total weight of input neurons.

Fig. 6 shows the architecture of an artificial neural
network generated by means of information included in the
chromosome and the relating matrix cNDM.

POLISH MARITIME RESEARCH, No 3/20178

Fig. 6. Generation of the neural network based on NDM, formed on the basis
of the chromosome

In Fig. 6, the chromosome components are presented
in different forms: the first component in the form of
a binary sequence, the other component in the form of real
numbers (chromosomes include integers, which become
real numbers after scaling). Individual neurons were
visualized by succeeding numbers N1, N2, …, Nn and the
type of the activation function: S - sigmoid, L - linear and
additionally numerical value of the bias. The resulting neural
network, presented in the Fig. 6 contains 4 neurons. The
distribution of these neurons to the input and output layers,
and possibly hidden, is determined by the designer of the
system. In this case, it is assumed that two neurons are in
the input layer, one is a hidden neuron and one is located in
the output layer. As mentioned previously, the matrix NDM
can define the coding neural network cNDM and also the
neural network for the rules aggregation aNDM in the way
as it was described for cNDM.

In the research, it was assumed that the coding neural
network is composed of nine neurons: three in the input
layer, three in the output layer, and three are the hidden
neurons. Therefore, matrix cNDM is composed of 9 rows
and 11 columns [12].

GENERATION OF FSNA MATRICES

Fig. 7 shows how to fill the matrices elements representing
the FSNA. The values of elements are produced by the coding
networks. The coding networks have three inputs and three

outputs. Network inputs determine parameters of the element,
whose value is produced by the network on its output. The
first and second inputs determine, respectively, the row and
the column of the matrix, and the third input determine the
ordinal number of the matrix.

Fig. 7. Generation of the FSNA matrices by the coding neural networks
in selected steps 2), 24), 25)

The coding network produces following outputs values:
1)	 strength: in a situation, where there is more than one

network, this parameter determines which coding
network should be used to „fill” the matrix in the current
step (the coding network „wins”, which has the highest
strength value),

2)	 threshold: this parameter determines whether the value
should be written to a specific element of the matrix, or the
item should be zero (the element is reset if the threshold
value is less than the desired threshold for the matrix),

3)	 value: assigned to the specific matrix element, defined by
the coding network inputs, if the network has the highest
strength value, and the threshold output is greater than
the desired threshold for this matrix.

Fig. 7 shows selected steps of „filling” the FSNA matrices by
one of two coding networks, formed on the basis of information
included in the chromosomes, evolving in two populations.
Step 2 illustrates a situation in which the first coding neural
network (defined by cNDM1) has a higher strength value and
its threshold output is greater than the desired threshold for
VBI. Therefore, the first coding network writes a value to
a specified element of the matrix. Step 24 illustrates the case
in which the second coding network is „stronger” (has higher
strength value), but the network’s threshold value is less than
the desired threshold for this matrix. In this case, the element
specified by the coding network inputs obtains zero value.

POLISH MARITIME RESEARCH, No 3/2017 9

Step 25 illustrates a situation similar to that which occurred
in step 2, with the difference that in this case, the second
element of the second matrix aNDM is filled. Generation of
all the elements of the matrices requires iterations equal to
the sum of elements in these matrices.

It can be seen that when using the CCGA-INE, the matrices
consisting of even hundreds of parameters can be filled by
means of information included in several chromosomes
(depending on the number of populations).

In the next section, the anti-collision problem used to
compare the TSK and the FSNA systems is described in
details.

ANTI-COLLISION PROBLEM

ASSUMPTIONS

It was assumed that the information from an onboard
navigation system, in particular about the detection of
obstacles, was discretized in such a way that the USV anti-
collision system received the distances from the obstacles
located in the seven sectors around the USV. The four sectors
with 45° view angle were located in the fore part and the
three sectors with 60° view angle located in the aft part
of the USV (Figure 8). Therefore, the anti-collision system
obtained information about other vessels in the form of
distances to the closest vessels in designated sectors from x1
to x7 (Figure 8). The sectors of detecting obstacles were limited
in bearing and range of their view. The value of the view
range was chosen experimentally. The anti-collision system
provided desired course to the target ψs. Based on information
about the obstacles and the target, the anti-collision system
calculated the change of course Δψ and the change of advance
velocity ∆Va. The advance velocity is a velocity measured in
a longitudinal axis of symmetry of the USV.

Fig. 8. Inputs and outputs of anti-collision system: x1, x2 … x7 – distances from
obstacles in sectors, ψs – desired course to the target, Δψ – the change of course

and DVa – the change of velocity USV

SCENARIOS

In order to tune and then validate the TSK and the FSNA
anti-collision systems, scenarios with increased difficulty
level were designed. Each scenario contained information
about starting and target positions of the USV and motion
vectors of the ten other vessels, operating in the same area.
The distance that had to be overcome by the USV was
approximately 2 nautical miles. This distance is sufficient to
deploy the collision obstacles. Due to USV dynamics [16], it
was assumed that the anti-collision system took the decisions
every 20 seconds.

Each of ten potential collision vessels moved with one
fixed course and velocity. In the first part of the scenarios, the
vessels moved along safe trajectories (not on collision course
with the USV). At the beginning, the USV had to „learn” to
reach the target. In the next part of the scenarios, the number
of units moving on collision courses were gradually increased.
Moreover, the number of vessels that moved near the starting
position and the target were also increased. Such vessels are
not on collision course at the beginning of the simulation,
but may be on collision course in subsequent moments after
various changes of the USV course.

In the following scenarios, the starting and the target
positions were changed in such a way that potential trajectories
ran in different directions: north, north east, south, etc.

In order to avoid too complex trajectories of the USV,
including incorrect maneuvers, e.g. multiple passage on
circular trajectory, an excessive descent from desired trajectory,
etc., timeout for the each scenario was implemented. The
timeout was equal to 150% of the time needed for movement
along a straight route from the starting point to the target
with an average velocity of 10 knots.

To tune and then validate the anti-collision systems,
respectively, 60 learning scenarios (including 30 simpler
and 30 additional scenarios), and 30 validating scenarios
were designed. In the validating scenarios, an additional
difficulty was implemented, i.e. the changes of course of the
vessels were added.

EVALUATION FUNCTION

The scenarios are used for training and then validating
sequentially, i.e. the first scenario was followed by a second,
then the third, etc. Scenario finished at the moment of
collision or after achieving the maximum time for the
scenario (the maximal number of decisions).

The behavior of the n-th anti-collision system in 60 learning
scenarios was evaluated using the fitness function F(FLn). The
function F(FLn) was calculated as the sum of the rewards
gained in all the scenarios. The following form of the reward
function f in m-th scenario was applied [15]:

POLISH MARITIME RESEARCH, No 3/201710

() −−+

−+

−

=

dcase
I
kIIIR

ccase
I
kd

bcase
I
kd

acase

FLF

t

t

t

nm

,50

,5.05.05.0

,5.05.0

,0

)(

max
maxmax

max

max

(2)

where k is a scenario number, FLn is an estimated n-th FSNA,
dt is a distance to the target at the end of scenario, and k is
a penalty for change of course greater than 90°, if the distance
to the closest obstacle is larger than 0.15 nautical mile.
Additionally, Imax is a maximal number of decision, which the
USV can take moving to the target, I is a number of decisions
taken by the anti-collision system, and Rt is a reward for the
USV reaching target (Rt = 100).

The function (2) is calculated for the following cases:
a)	 collision occurred,
b)	USV did not reach the target, but did not collide with other

vessels; at the end of simulation, the USV was located at the
distance larger than 1 nautical mile from the target,

c)	 USV did not reach the target, but did not collide with
other vessels; at the end of simulation, the USV was located
at the distance less than or equal to 1 nautical mile from
the target,

d)	USV reached the target.
The occurrence of collisions automatically stops the

process of evaluating the TSK or the FSNA systems in the m-th
scenario with the value of the function Fm(FLn) equal to zero.
In the case where the USV did not collide with other vessels
and did not reach the target, the evaluation is dependent on
the distance to the target at the end of simulation, and the
number of forbidden maneuvers (change of course greater
than 90°, if the distance to the closest obstacle is larger than
0.15 nautical miles). Tuning process of the anti-collision
system is determinated by the evaluation function. The greater
the function result is, the more effective anti-collision system
is tuned.

The whole process of tuning the TSK or the FSNA systems
is terminated, when the evaluation function reaches a value
greater than or equal to 6000, i.e. when the USV reached
the target without collision in 60 learning scenarios. In the
research presented in the next section, 60,000 iterations were
applied as the maximum number of iterations for the tuning
process.

NUMERICAL RESEARCH

MODEL OF THE VESSEL MOTION

To simulate horizontal plane motion of the USV and other
vessels control-oriented model of marine object was applied
[13]. The model was described in the following matrix form:

SV = [Pij]6 x 3 (3)

where Pi1 includes the changes of course Δψkl, Pi2 contains the
changes of coordinate x: Δxkl, and Pi3 includes the changes
of coordinate y: Δykl.

Elements of the matrices were registered in response to
desired course ψψ ∆⋅= kz

k (where k = 1..36 and °=∆ 5ψ
), in l-th time step tltl ∆⋅= (where l = 1..60 and Δt = 0,5 s),
for advance velocities ViVi ∆⋅= (where i = 1..5 and
ΔV = 5 knots).

For USV and the other vessels motion simulation, 5 discrete
advance velocities were applied (5, 10, …, 25 knots), and
the state vector of the vehicle and vessels were reduced to
3 parameters: course, coordinate x and coordinate y. The
more details about the model was included in [13].

Parameters of the model were registered based on the
classical nonlinear model [2]. To control the course of the USV
and the vessels, slide mode controllers were used, which were
described in details in [16].

STRUCTURE OF THE TSK AND THE FSNA SYSTEMS

In the structure of the fuzzy system, the following three
components should be determined: fuzzy sets, fuzzy rules
and fuzzy operation [1,19]. Based on the earlier research [15],
fuzzy sets for inputs and outputs, illustrated in Figure 9, were
applied. The same universe of discourse was used for all the
inputs (x1, x2 … x7 – distances from obstacles in sectors, ψs –
desired course to the target) and the same for all the outputs
(Δψ – the change of course and ΔVa – the change of velocity
USV). The whole structure of the anti-collision system of
USV is illustrated in Figure 8.

Figure 9. Fuzzy sets for inputs (gaussian functions) and output (singletons)
of the TSK anti-collision system

In the TSK anti-collision system, fuzzy rules were tuned
by the evolutionary method.

POLISH MARITIME RESEARCH, No 3/2017 11

It was assumed that crisp values of the outputs were
calculated using a weighted sum of the rules (wtsum) [1].
For this purpose, it is important to calculate the weight of
the i-th rule and the crisp value of the output of the i-th
implication. Calculation of rules weights is usually carried
out using a logical product (min) or an algebraic product
(product) [1]. Due to the lack of a proper solution of the TSK
system using operation (product), in addition to the operation
(min), an algebraic sum (sum) was applied [1] (usually (sum)
is used for an alternative of prerequisites). In the case of using
singletons on the outputs, the crisp value of the output of
the i-th implication is reduced to the constant value of the
proper singleton.

For the TSK system mentioned above preliminary studies
were carried out for the simpler 30 learning scenarios.
Satisfactory results were not received. Therefore, in the TSK
system, additional improvement was introduced, i.e. rules
with the same singletons were aggregated. For this purpose,
two optional operations were applied: a logical sum (max) and
the algebraic sum (sum) [1]. In this case, the weighted sum
of rules operation (wtsum) was also modified in such a way
that it did not work on all the rules, but on the aggregated
rules for the same singletons in conclusions. In this case,
the maximum number of components of the weighted sum
is equal to the number of singletons in the output variable.

According to the description included in Section 2, in
the FSNA, both fuzzy sets and rules were tuned in the
evolutionary way.

In the FSNA, crisp values on the outputs were achieved
in the result of operation of the aggregating neural network.
The neural network is “fed” on the inputs with the weights
of the fuzzy rules. To calculate the weight of rule, the same
operations were applied as for the TSK system, i.e. the
logical product (min) for a conjunction of prerequisites or
the algebraic sum (sum) for an alternative of prerequisites.

TSK SYSTEM LEARNING AND VALIDATION

The learning phase of the TSK system was divided into
two parts. The result of the first part was that the fuzzy
systems learned by means of 30 simpler learning scenarios,
described in [15]. The results of the second part were presented
in the Table 1. The learning process was performed based
on 30 simpler and 30 additional learning scenarios (in total
60 learning scenarios).

The main aim of the process was to compare different
variants of the fuzzy system. All variants had the same
distribution of the fuzzy sets, presented in the Figure 9. The
variants differed in the maximum number of fuzzy rules (10
or 20) and applied fuzzy operations (min – sum, sum – sum,
min – max, sum – max), respectively for (the calculation
of the rules weights – the aggregation rules with the same
singletons).

Tab. 1.	 Results of the learning for TSK system for the anti-collision problem
defined by 60 learning scenarios

Variants of TSK system Learning

Aggre-
gation of
prerequi-

sities

Aggre-
gation of
identical

singletons

Number
of rules

Average
total

evaluation
function

Maximal
total

evaluation
function

1 min sum 10 3416 3607

2 min max 10 3252 3605

3 sum sum 10 3299 3606

4 sum max 10 3393 3606

5 min sum 20 3466 3506

6 min max 20 3605 3606

7 sum sum 20 3112 3606

8 sum max 20 3436 3606

According to the results of the first part of the learning
process, following parameters of the evolutionary method
were used: the mutation probability equal to 0.045 and
the crossover probability equal to 0.4. Similarly to the
previous research [15], each variant of the fuzzy system was
evolutionary tuned 30 times. Therefore, the Table 1 presents
the results of the evolution in the form of the average and the
maximum values of the total evaluation function achieved
in 30 runs.
Tab. 2.	 Results of validating the TSK system for the anti-collision problem in

30 scenarios

Variants of TSK system Validation

Aggre-gation
of prerequi-

sities

Aggre-gation
of identical
singletons

Number of
rules

Average total
evaluation
function

Maximal
total

evaluation
function

1 min sum 10 1215 1702

2 min max 10 1462 1704

3 sum sum 10 1170 1805

4 sum max 10 1248 1805

5 min sum 20 1556 1706

6 min max 20 1605 2303

7 sum sum 20 1269 2103

8 sum max 20 1229 1902

Based on the results of evolutionary tuning of the TSK
system for 60 learning scenarios (Table 1), this fuzzy system
was not able to “learn” new scenarios. Evolution in the best
case, stopped at scenario no. 36 and was not able to cope with
the collision situation defined by scenario no. 37.

Despite the lack of even one TSK system that would have
successfully avoided a collision in all 60 scenarios, to compare
the TSK system with the FSNA, it was decided to validate the
obtained TSK solutions by means of 30 validating scenarios.

Based on the results of validating tests presented in the
Table 2, it is worth noting that the inability to tune the TSK
fuzzy system in the learning phase, resulted in achieving
poor evaluation in the validation phase.

POLISH MARITIME RESEARCH, No 3/201712

FSNA LEARNING AND VALIDATION

The learning and validating processes of the FSNA were
carried out by means of the learning and validating scenarios,
the same as were used for the TSK system. Based on the results
of the previous research [15], the subsequent parameters for
validation tests were used:
1)	 the mutation probability 0.045,
2)	 the crossover probability 0.4,
3)	the operation (min) for the aggregation of prerequisites.

The results of tuning 16 FSNA variants were presented
in Table 3.
Tab 3.	 Results of learning the FSNA for the anti-collision problem defined

by 60 learning scenarios

FSNA variants Learning

Number of
fuzzy rules

Number
of hidden
neurons

Average
total

evaluation
function

Maximal
total

evaluation
function

Number of
success-
full runs

1

3

0 4094 5008 4

2 2 4580 5309 0

3 5 5095 6009 0

4 8 1464 2404 2

5

6

0 4521 6009 2

6 2 4735 6011 2

7 5 4581 6011 4

8 8 1957 2404 6

9

8

0 4085 5008 0

10 2 4464 5819 0

11 5 4264 6011 0

12 8 1638 2304 1

13

10

0 4093 5608 0

14 2 3993 4308 0

15 5 5066 6013 0

16 8 1549 2403 2

The variants differed in the number of fuzzy rules (3, 6, 8
and 10) and the number of hidden neurons in the aggregating
neural network (0, 2, 5 and 8 neurons).

As in previous studies, each FSNA variant evolved during
30 runs. The results of tuning various options FSNA fuzzy
system were illustrated in Table 3 as the average and the
maximum overall evaluation functions. In addition, each
FSNA variant was evaluated by an additional index, i.e. the
number of successful runs (ended without collision).

The best learning result was achieved for the FSNA variant
with 6 fuzzy rules and 8 hidden neurons in the aggregation
network. For 30 runs of evolution for this variant, 6 runs
were successful (the collision was avoided in all 60 learning
scenarios), i.e. efficiency of tuning method was 20%.

Based on the results of evolution (Table 3), large influence
of neural network for the fuzzy rules aggregation on
the operation of the entire FSNA can be seen. Increasing

the number of hidden neurons in these networks leads to
better results (the average total evaluation function and the
number of successful runs increased). Due to the condition
of finishing the tuning process in a specified finite time, no
research to a larger number of hidden neurons was performed.
Tab. 4.	 Results of validating the FSNA for the anti-collision problem

in 30 scenarios

FSNA variants Validation

Number of
fuzzy rules

Number
of hidden
neurons

Average total
evaluation
function

Maximal total
evaluation
function

1

3

0 735 1012

2 2 1917 2503

3 5 1946 2604

4 8 1946 2604

5

6

0 1977 2604

6 2 1977 2705

7 5 2037 2606

8 8 2037 2606

9

8

0 1550 2504

10 2 1550 2206

11 5 1449 2103

12 8 1449 2103

13

10

0 2060 2703

14 2 1531 2105

15 5 2018 2704

16 8 2018 2704

The verification tests were carried out for the obtained
FSNA by means of 30 validating scenarios, the same as for the
TSK system (Table 4). No FSNA was positively verified in all
30 validating scenarios. The best solutions for anti-collision
systems managed to avoid collisions in the 27 validating
scenarios, i.e. the best solutions of the FSNA achieved an
effectiveness of 90%.

It can be concluded that the solutions of FSNA that have
evolved in 60 learning scenarios, are able to work effectively on
a different data set than the training set. As mentioned earlier,
an important element for success of the learning process is the
selection of training data. In this case, the learning scenarios
could be improved to represent a wider range of learning data.

EXAMPLES OF FSNA OPERATION

In Fig. 10 and 12, the trajectories of the USV and 10 other
vessels were illustrated for scenarios no. 14 and 10, respectively
with collision and without collision. The USV starting position
was marked by a circle, and the starting positions of the other
vessels were marked by asterisk. Target position of the USV
is the position with coordinates (4000 m, 4000 m), which is
placed outside the space visualized in Figure 10.

POLISH MARITIME RESEARCH, No 3/2017 13

Fig. 10. Trajectories of the USV (red solid line, a circle – starting position),
and the vessels (blue dotted lines, asterisks – starting positions) in scenario

with collision (black arrow)

In Fig. 11, it can be seen that the USV initially moved
straight to the target, then at approx. 170 s of simulation
performed a maneuver avoiding a collision with one of the
other vessels. Next, for longer than 200 seconds, the USV
maneuvered to the port and to the starboard, trying to
avoid collision and to cover the shortest path to the target.
At approx. 460 s of simulation, the USV collided with one
of the other vessels.

Fig. 11. Change in time of the USV desired course
in the scenario with collision

In Fig. 12, it can be seen that the USV made several changes
of its course during approx. 500 s of simulation. These
manoeuvers enabled the USV to leave the area of potential
collisions, and then to reach the target without collision.

Fig. 12. Trajectories of the USV (red, solid line, a circle – starting position,
a wheel – target position) and the vessels (blue, dotted lines, asterisks – starting

positions) in the scenario without collision

CONCLUSIONS

In the paper, the new neuro-fuzzy system called FSNA
was presented. The FSNA is an improvement of the classical
TSK system enriched with (1) integration of fuzzy rules with
membership functions, and (2) aggregation of fuzzy rules
by an artificial neural network. The FSNA was tuned by the
evolutionary method named CCGA-INE. The FSNA correctly
learned and then was verified by means of respectively,
the learning and validating scenarios in the anti-collision
problem.

It is worth mentioning that the CCGA-INE is a quite efficient
but a time-consuming method taking into consideration the
learning process. The one variant of FSNA was received after
12-24 hours of a one core 3 GHz processor work. The research
was conducted using BSD Operating System. Despite the long
process of learning, the taught and verified variant of the
FSNA can be used as a control system in time close to real
using a medium class hardware platform.

The FSNA was compared with its predecessor the classical
TSK system. The classical TSK system with base of rules
tuned in evolutionary way (CCGA-INE) poorly generalized
learned anti-collision behaviour. The classical system showed
less effectiveness, both in the learning and validating phases.
The selected solutions of FSNA obtained during an evolution
process (Table 4) guarantee good behaviour for the validation
scenarios. It should be noted that in the case of new scenarios,
they always can be used for precise tuning of the FSNA
(an additional learning process).

In the future, the following improvements and research
are proposed to implement and test:
1)	 Implementation of the FSNA system based on Mamdani

type fuzzy system,

POLISH MARITIME RESEARCH, No 3/201714

2) 	Examination of the impact of an artificial neural
network at the input of the fuzzy system, e.g. to aggregate
prerequisites of the fuzzy rules,

3) 	FSNA testing in other control problems, e.g. to control
a new marine control object – biomimetic underwater
vehicle.

REFERENCES

1.	 D. Driankov, H. Hellendoorn, M. Reinfrank, An Introduction
to Fuzzy Control, Springer-Verlag, 1996.

2.	 T.J. Fossen, Guidance and Control of Ocean Vehicles, John
Wiley and Sons Ltd., 1994.

3.	 D.E. Goldberg, Genetic Algorithms in Search, Optimization
and Machine Learning, Addison Wesley, Reading,
Massachusetts, 1989.

4.	 K. Guney, N. Sarikaya, Comparison of Mamdani and Sugeno
Fuzzy Inference System Models for Resonant Frequency
Calculation of Rectangular Microstrip Antennas, Progress
In Electromagnetics Research B, Vol. 12, p. 81–104, 2009.

5.	 C. Hwang, “The integrated design of fuzzy collision-
avoidance and H∞-autopilots on ships”, The Journal of
Navigation, Vol. 55(1), pp.117-136, 2002.

6.	 Z. Kitowski, “Autonomous unmanned surface vehicle
Edredon”, Polish Hyperbaric Research, Vol. 3(40), 2012,
s. 7-22.

7.	 J. Lisowski, “Sensitivity of Computer Support Game
Algorithms of Safe Ship Control”, International Journal
of Applied Mathematics and Computer Science, Vol. 23,
No. 2, 439–446, 2013.

8.	 E. H. Mamdani, S. Assilian, “An experiment in linguistic
synthesis with a fuzzy logic controller”, International
Journal of Man-machine Studies, Vol. 7, p. 1-13, 1975.

9.	 K. Naus, M. Wąż, A simplified navigational chart pyramid
dedicated to an autonomous navigational system, Polish
Hyperbaric Research, Vol. 3(40), pp. 99-118, 2012.

10.	S. Osowski, Neural networks for data processing, in polish,
Publishing House of Technology University in Warsaw,
2006.

11.	M. A. Potter, K. A. De Jong, “Cooperative coevolution:
An architecture for evolving coadapted subcomponents”,
Evolutionary Computation, Vol. 8(1), p. 1–29, 2000.

12.	T. Praczyk, “Neural anti-collision system for Autonomous
Surface Vehicle”, Neurocomputing, Vol. 149, Part B, p. 559–572,
2015.

13.	T. Praczyk, P. Szymak, “Decision System for a Team of
Autonomous Underwater Vehicles – Preliminary Report”,
Neurocomputing, Vol. 74 (17), pp. 3323-3334, 2011.

14.	T. Praczyk, P. Szymak, “Using Genetic Algorithms to Fix
a Route for an Unmanned Surface Vehicle”, in Proceedings
of the 17th International Conference on Methods and Models
in Automation and Robotics, pp. 487-492, 2012.

15.	P. Szymak, T. Praczyk, “Using Neural-Evolutionary-
Fuzzy Algorithm for Anti-collision System of Unmanned
Surface Vehicle”, in Proceedings of the 17th International
Conference on Methods and Models in Automation and
Robotics, pp. 286-290, 2012.

16.	P. Szymak, “Course Control of Unmanned Surface Vehicle”,
Solid State Phenomena, Vol. 196, pp. 117-123, 2013.

17.	 T. Takagi, M. Sugeno, “Fuzzy Identification of Systems
and its Application to Modelling and Control”, IEEE
Transactions on Systems, Man and Cybernetics, vol. 15,
pp. 116-132, 1985.

18.	J. Vieira, F.M. Dias, A. Mota, Neuro-Fuzzy Systems:
A Survey, WSEAS Transactions on Systems, 3(2), 2004.

19.	L. Zadeh, “Fuzzy sets”, Information and Control, vol. 8,
pp. 338–353, 1965.

20.	Y. Zhuo, “An intelligent decision support system to ship
anti-collision in multi-ship encounter”, in Proceedings of
the Intelligent Control and Automation 2008, pp. 1066–1071,
2008.

CONTACT WITH THE AUTHOR

Piotr Szymak
e-mail: p.szymak@amw.gdynia.pl

Polish Naval Academy
Smidowicza 69, 81-127 Gdynia

Poland

