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ABSTRACT

The paper presents the research whose the main goal was to compare a new Fuzzy System with Neural Aggregation 
of fuzzy rules FSNA with a classical Takagi-Sugeno-Kanga TSK fuzzy system in an anti-collision problem of Unmanned 
Surface Vehicle USV. Both systems the FSNA and the TSK were learned by means of Cooperative Co-evolutionary 
Genetic Algorithm with Indirect Neural Encoding CCGA-INE. 
The paper includes an introduction to the subject, a description of the new FSNA and the tuning method CCGA-INE, 
and at the end, numerical research results with a summary. The research includes comparison of the FSNA with 
the classical TSK system in the anti-collision problem of the USV.
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INTRODUCTION

Unmanned Surface Vehicles (USVs) are vessels which 
can perform many different missions both civilian and 
military. Civilian usage of USVs is mainly connected with 
different inspections of underwater environment, especially 
for oceanography and marine biology purposes. Military 
applications of USVs are focused on mine countermeasure, 
anti-submarine warfare and Intelligence, Surveillance and 
Reconnaissance (ISR) tasks. 

USVs can be operated remotely and/or autonomously. USVs 
moving in a marine environment are exposed to collisions 
with stationary obstacles as well as moving obstacles, mainly 
other vessels occurring in USV’s operation area. Therefore, 
a significant problem appearing in the USV motion is 
counteracting possible collisions [5,7,20]. Software responsible 
for the anti-collision usually cooperates with navigation 

devices such as: a radar system, an AIS receiver, GPS, a speed 
log, a gyrocompass, etc., and actuators such as: a propeller, a 
rudder, and additionally cooperates with software for route 
planning [14] and an electronic navigation map [9].

In the paper, the anti-collision problem is considered as 
a problem of selecting proper trajectory (i.e. desired waypoints 
achieved in desired time) for the USV operating in an area 
with other vessels which can be located on a collision course 
with the USV’s course. Taking into account control task for 
the USV, proper changes of a course and a velocity have to be 
generated for avoiding the collision during motion of USV 
from starting to target position. 

To resolve the USV anti-collision problem, an innovative 
Fuzzy System with Neural Aggregation of fuzzy rules (FSNA) 
was proposed. The FSNA was compared with the classical TSK 
fuzzy system. To tune the structure and parameters of both 
systems, Cooperative Co-evolutionary Genetic Algorithm 
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with Indirect Neural Encoding (CCGA-INE) was applied. 
To simulate the USV and other vessels motion, Control-
Oriented Model of motion of Unmanned Marine Vehicle 
(COMUV) was used. A detailed description of the COMUV 
was included in [13]. The model parameters were applied for 
USV Edredon (Fig. 1) [6,16]. 

Fig. 1. Unmanned Surface Vehicle Edredon [6]

The Edredon was built by a consortium, whose leader was 
the Polish Naval Academy [6]. The vehicle can be controlled 
remotely from a Mobile Command Centre (MCC) (Fig. 2), 
or can be controlled locally from on board of the vehicle. As 
can be seen in Fig. 2, the MCC simulates an operator console 
located aboard USV with a classical steering wheel and a set 
of shifters and switches. To visualize the space around the 
USV, a set of three monitors that receive signals from daylight 
and thermal cameras, installed aboard USV is used.

Fig 2. Mobile Control Centre of USV Edredon [6]

During previous research devoted to the anti-collision 
system of the USV Edredon [15], the classical TSK system tuned 
by the new CCGA-INE method was used. The anti-collision 
problem was defined by 30 scenarios including trajectories 
of ten other vessels, which can be on collision course with 
the USV. The achieved TSK system successfully (without 
collision) controlled the USV in all the 30 collision scenarios 
[15]. Then, the 30 more complicated scenarios were created 
for testing the TSK anti-collision system. Unfortunately, 
the tests with 30 additional more complicated scenarios did 
not end successfully. Therefore, in this paper, an improved 
FSNA system was used to solve the anti-collision problem 
defined by the 60 scenarios (initial simpler 30 scenarios 
and additional more complicated 30 scenarios). Moreover, 
this paper included comparison of working TSK and FSNA 
anti-collision systems. Both systems were verified by means 
of 30 validating scenarios. It is worth underlying that the 
anti-collision problem defined by 60 scenarios is more difficult 
than the same problem defined by 30 scenarios. The first 
30 scenarios are simpler and the next 30 scenarios are more 
complicated. The complexity is connected with trajectories 
of the other ships. The trajectory selection influences a greater 
number of possible collision situations.

The proposed FSNA is based on the classical TSK fuzzy 
system with two improvements. The first one is based on using 
an artificial neural network instead of classical operator for 
calculation of crisp value in the fuzzy system output (called 
in this paper fuzzy rules aggregation). Based on the literature 
[18], the FSNA can be classified as a concurrent neuro-fuzzy 
system. The second improvement depends on integration 
of the fuzzy rules and fuzzy sets. Both improvements allow 
to introduce more nonlinearity in the fuzzy system and 
consequently to achieve desired solution. 

The CCGA-INE is based on Cooperative Coevolution 
Genetic Algorithm CCGA proposed by Potter and De Jong 
[11]. It was improved by adding indirect encoding of the fuzzy 
system by means of an artificial neural network. The CCGA 
depends on an evolution of cooperating subcomponents of 
an overall solution. The subcomponents evolve in different 
populations of species, which have to cooperate to achieve 
a desired solution. 

The paper is as follows: Section 2 includes details of the 
Fuzzy System with Neural Aggregation (FSNA). Section 3 
explains details of tuning method of FSNA called Cooperative 
Co-evolutionary Genetic Algorithm with Indirect Neural 
Encoding (CCGA-INE). Section 4 includes description of the 
anti-collision problem used as a testbed and section 5 presents 
the selected numerical research. The last 6th section includes 
a summary of the research. Detailed description of the 
classical TSK system for anti-collision problem is presented 
in [15,17], and control-oriented model of the motion used for 
the USV is the same, which was applied for an underwater 
vehicle (UV) [13]. The motion of UV is considered in 6 degrees 
of freedom, while the motion of USV usually in 3 degrees 
of freedom. Therefore, the UV model is useful to simulate 
motion of USV. 
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DESCRIPTION OF FSNA

ASSUMPTIONS

The new FSNA is based on the classical TSK fuzzy system 
proposed in [17]. The TSK system is well known and often 
used especially in control applications. Comparing to another 
a classical Mamdani type fuzzy system [8], the TSK system is 
computationally simpler but similarly efficient [4]. 

Comparing to the TSK system, following assumptions 
were made for the FSNA:
1)	 using a logical or an algebraic product for a rules’ 

prerequisites aggregation (a conjunction of prerequisites),
2)	 input variables represented by gaussian membership 

functions (two parameters for each fuzzy set) and output 
variables represented by singletons (one parameter for 
each rule’s consequent).
Modifications that led to the creation of the FSNA are as 

follows:
1)	 integration of the fuzzy sets and rules (the system is in the 

form of a matrix of integrated fuzzy sets and rules),
2)	using an artificial neural network for the aggregation 

of the fuzzy rules instead of e.g. weighted sum [1].
The modifications are described in more details in the 

following subsections.

MATRIX OF INTEGRATED FUZZY SETS AND RULES

In the classical TSK system, each variable is defined by the 
specified number of fuzzy sets (represented by membership 
functions). The fuzzy sets are usually set by an expert. If the 
fuzzy sets are tuned automatically, usually, the expert specifies 
the number of fuzzy sets for each variable. In the TSK system, 
each rule’s prerequisite can operate on one fuzzy set selected 
from all the fuzzy sets defined for the variable. In this case, 
a prerequisite is defined by a linguistic expression, e.g.: 

X1 is HIGH

(here: X1 is an input, HIGH determines one of the fuzzy sets 
of input X1).  

In the FSNA, fuzzy sets are integrated with the fuzzy rules. 
It means that instead of using linguistic expressions each 
prerequisite is defined by parameters of the fuzzy set (in the 
case of gaussian membership function, two parameters define 
this function: an expected value and a variance). In the FSNA, 
the same prerequisite (relating to the same input) in different 
rules can operate on different fuzzy sets. In an extreme FSNA 
case, each variable is defined by the number of fuzzy sets 
equal to the number of fuzzy rules. This approach is very 
useful in the situation, when the rules or all the fuzzy system 
parameters are tuned in an automatic way, e.g. by means of 
an evolution. In this case, division of an input-output space 
is only limited by the number of fuzzy rules, and the tuning 

method decides on the number (and parameters) of fuzzy 
sets needed to represent a specified variable.

In the research presented in the following section, the 
following representation of the FSNA in the form of a matrix 
of integrated fuzzy sets and rules VBI was applied:
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where n
kmr  is m-th parameter of fuzzy set or singleton of k-th 

input or the output variable in n-th fuzzy rule, nk is the 
number of input and output variables, nm is the maximal 
number of parameters describing a fuzzy set or a singleton, 
and nn is the number of fuzzy rules.

In the matrix VBI, some elements can be zero. In this case, 
appropriate prerequisites or conclusions will be removed, e.g. 
if the first and second elements in the first row are equal to 
zero, it means that prerequisite relating to the first input is 
removed in the first rule. 

NEURAL AGGREGATION OF RULES

The next step of modification of the TSK fuzzy system is 
to apply an artificial neural network for the aggregation of 
implications of fuzzy rules. In the classical TSK system, the 
conclusion of i-th implication of a fuzzy rule is in the form 
of a functional dependence of the rule’s predecessors. In this 
case, the aggregation of the implications is typically calculated 
using a weighted sum of individual rules [1].

Often (in engineering practice), due to the need of reduction 
the number of parameters necessary to tune and, consequently, 
to simplify the system, the functional dependence of the 
rule’s predecessors is simplified into singletons. This leads to 
a reduction of a non-linearity of the system, which in turn 
may lead to the inability to match a problem. The possibility 
of using an artificial neural network to aggregate rule outputs, 
results mainly from the fact that they are successfully used to 
approximate non-linear functions [10]. Thus, it seems that the 
application of a neural network, in this case, is more flexible 
in obtaining a satisfactory solution fitted to the nonlinear 
control object.

It was assumed that an artificial neural network in the 
FSNA performs the duty of rule aggregation, i.e. inputs of the 
network are weights of rules wi, and weights are determined 
using a logical or an algebraic product. Weights are calculated 
based on the membership function of the individual fragments 
of each rule’s predecessor. In this case, the output of the whole 
TSK system is a crisp value of the neural network output y. The 
network architecture is always related to a number of rules 
(a number of neural network inputs) and generally a solved 
problem (internal network topology, weights and types of an 
activation function). 
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Fig. 3 shows the exemplary FSNA structure formed by 
a connection of a neural network with a TSK fuzzy system. 
In Fig. 3, the i-th neuron of the network is represented by Ni.

In the research presented in the following part of the 
paper, a feed-forward artificial neural network was applied 
for the aggregation of fuzzy rules [10]. The architecture of 
the network was determinated by the evolutionary method 
CCGA-INE.

Fig. 3. The connection of neural network with TSK fuzzy system 
for the aggregation of fuzzy rules (Ni defines the i-th neuron)

The method of encoding an artificial neural network and its 
tuning by means of evolution is described in the next section.

DESCRIPTION OF CCGA-INE

CO-EVOLUTION

Co-evolution is a specific type of closely related species 
evolution. In the basic evolutionary algorithm, the process 
of evolution is seen as an attempt to adapt a population 
of individuals to a specific environment. Meanwhile, in the 
co-evolutionary approach, the process of co-evolution is 
seen as an attempt to adapt the population (or a subgroup 
of individuals from the population) to the specific environment 
that is affected by a population of another species (or another 
subgroup of individuals from the population). Usually, in 
the co-evolution, a complex solution is divided into sub-
component solutions to evolve independently, i.e. there are 
many populations of individuals (multiple species), wherein 
each population encodes one sub-component solution. 

A good example of co-evolution comes from the natural 
world in the form of relation between a predator and prey. The 
predator hunting the prey eliminates the weaker individuals 
from the population of prey. It causes those individuals which 
survive to have better features that can be transferred to 
their offspring. Similarly, the predators which achieve “worst 
results” in catching preys, have also less chance to transfer 
features to their offspring.

OVERVIEW OF CCGA

In general, a genetic algorithm (GA) is a heuristic search 
that mimics the process of natural selection. The GA is based 
on an iterative evolutionary procedure involving selection 
of genotypes for reproduction based on their fitness, and 
then introducing genetically changed (by means of mutation, 
crossover and other genetic operators) offspring into the 
next population. The procedure is finished after achieving 
satisfactory genotypes (a set of features of an individual) 
which correspond to phenotypes with high fitness function 
(the individual from a population) [3].

The CCGA is a specific Cooperative Coevolution Genetic 
Algorithm proposed by Potter and De Jong [11]. Generally, the 
CCGA solution is divided into sub-components that evolve 
in separate populations. There is no possibility of exchanging 
genetic information between populations of separate species, 
but individuals of different populations have to work together 
to achieve a satisfactory overall solution. Division into the 
sub-components is carried out by the following method. 
Initially, the solution is encoded in a single chromosome, 
which evolves in a single population. If the evolution of this 
population, after a specified number of iterations, does not 
lead to a satisfactory solution, then the next population is 
created, and next two populations evolve, etc. Sometimes, 
the CCGA algorithm may find that a particular species 
(population) does not make a significant contribution to 
the overall solution. In this case, the population is removed 
from the evolutionary algorithm. In the CCGA, to evaluate 
the overall solution a single individual of the first population 
must be connected with individual from each of the other 
populations [11].

When evaluating an individual from the given population, 
it is always combined with the fittest individual from each 
of the other populations, based on the evaluation (a fitness 
function) obtained in the previous iteration of an evolutionary 
algorithm (EA). During the first iteration of the EA, an 
individual is combined with the randomly selected individual 
from each of the other populations. 

GENERAL IDEA OF CCGA-INE

Because the fuzzy system is described by a large number of 
parameters, the chromosomes coding these parameters should 
be very long. Evolution of long chromosomes is connected 
with complicated calculations, and in consequence, problems 
with achieving a final solution within assumed finite time. Due 
to potentially long chromosomes for the system defined by 
the large number of parameters, the indirect encoding of the 
fuzzy system is proposed. In the indirect encoding method, 
information from the chromosomes is used to generate other 
systems (neural network, nonlinear function, etc.), which in 
turn generates parameters of the FSNA. Such way of encoding 
is applied to create large fuzzy systems using relatively short 
chromosomes.

Generally, in the CCGA-INE a single chromosome encodes 
a neural network called coding network, defined by a Coding 
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Neural Network Definition Matrix cNDM [12], while the 
coding network or networks encode the FSNA (i.e. coding 
networks fills elements of matrices representing this system). 
In the case of a neural network for aggregation of fuzzy rules, 
coding networks generate elements of Aggregation Neural 
Network Definition Matrix aNDM, defining structure and 
parameters of the aggregation network. It should be noted 
that in the CCGA many populations can evolve, i.e. many 
chromosomes can generate many coding networks (Fig. 4). 
For many coding networks, each element of the matrices 
representing the FSNA is generated by one of the coding 
networks according to the algorithm described in the 
following subsection. 

Figure 4. Generation of the FSNA using CCGA-INE

In conclusion, it should be noted that the task of CCGA-
INE is to find the best structure and parameters of coding 
neural networks (one or several depending on the progress 
of co-evolution) which, in turn, encode integrated matrix of 
fuzzy sets and rules VBI and a matrix defining an artificial 
neural network for aggregation of fuzzy rules aNDM.

GENERATION OF CODING AND AGGREGATING 
NEURAL NETWORKS

Fig. 5 shows a method for generating a coding neural 
network (defined by cNDM) [12] using the information stored 
in the chromosome, consisting of four components. Each 
component is composed of 7 bits, i.e. the whole chromosome 
is built from 28 bits. During the research, co-evolution 
produced chromosomes consisting of four to more than thirty 
components, i.e. chromosomes consisting of more than two 
hundred bits. The number of components is depended on the 
complexity of the problem and the co-evolution. Division into 
components is a decomposition of the problem. Always the 
first component of each chromosome is considered as a string 
of bits, while the next components represent integer values 

(scaled to real values), which are subsequent elements of the 
matrix. In the illustrated example (Fig. 5), the first component 
of the chromosome determines the topology of the neural 
network by indicating the elements of matrix cNDM, which 
should be reset (white boxes), and other which should adopt 
the values determined by the successive components of the 
chromosome c1, c2 and c3 (black boxes).

Consecutive bits included in component „topology” 
determine if the following elements of the matrix (beginning 
from the first column and row, and ending on the last row and 
column) are zero or non-zero (Fig. 5). Bit string „topology” is 
too short to determine all the elements of the matrix, therefore, 
the string is repeated, i.e. after the last bit is the first bit of the 
same string, then second bit, etc., until all the elements are 
calculated. The bit which has a zero value determines zero 
value of the relating element in the matrix. This element is 
illustrated by white boxes in the table in Fig. 5. Bit which has 
value “1” determines non-zero value of the relating element 
in the matrix. The non-zero element is marked by grey boxes 
in the table in Fig. 5. The precise values of non-zero elements 
are determined by other components of the chromosome 
„coefficient no. 1”, „coefficient no. 2” and „coefficient no. 3”. 
Assignment of values c1, c2 and c3 for successive elements of 
matrix cNDM is carried out according to the same principle 
as it is used for the bits of the component „topology”.

Figure 5. Generation of matrix cNDM by the chromosome consisting 
of four components

Matrix cNDM shown in Fig. 5 has n rows and n + 2 
columns, where n is the number of neurons in the network 
layers, sequentially: input, hidden and output. Elements of 
matrix cNDM from the first element to the element of n-th 
row and n-th column determine the weights of connections 
between neurons. Column n + 2 determines type of the 
activation function, and the column n + 1 is a bias, i.e. a 
constant added to the total weight of input neurons.

Fig. 6 shows the architecture of an artificial neural 
network generated by means of information included in the 
chromosome and the relating matrix cNDM. 
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Fig. 6. Generation of the neural network based on NDM, formed on the basis 
of the chromosome

In Fig. 6, the chromosome components are presented 
in different forms: the first component in the form of 
a binary sequence, the other component in the form of real 
numbers (chromosomes include integers, which become 
real  numbers after scaling). Individual neurons were 
visualized by succeeding numbers N1, N2, …, Nn and the 
type of the activation function: S - sigmoid, L - linear and 
additionally numerical value of the bias. The resulting neural 
network, presented in the Fig. 6 contains 4 neurons. The 
distribution of these neurons to the input and output layers, 
and possibly hidden, is determined by the designer of the 
system. In this case, it is assumed that two neurons are in 
the input layer, one is a hidden neuron and one is located in 
the output layer. As mentioned previously, the matrix NDM 
can define the coding neural network cNDM and also the 
neural network for the rules aggregation aNDM in the way 
as it was described for cNDM.

In the research, it was assumed that the coding neural 
network is composed of nine neurons: three in the input 
layer, three in the output layer, and three are the hidden 
neurons. Therefore, matrix cNDM is composed of 9 rows 
and 11 columns [12].

GENERATION OF FSNA MATRICES

Fig. 7 shows how to fill the matrices elements representing 
the FSNA. The values of elements are produced by the coding 
networks. The coding networks have three inputs and three 

outputs. Network inputs determine parameters of the element, 
whose value is produced by the network on its output. The 
first and second inputs determine, respectively, the row and 
the column of the matrix, and the third input determine the 
ordinal number of the matrix. 

Fig. 7. Generation of the FSNA matrices by the coding neural networks 
in selected steps 2), 24), 25)

The coding network produces following outputs values:
1)	 strength: in a situation, where there is more than one 

network, this parameter determines which coding 
network should be used to „fill” the matrix in the current 
step (the coding network „wins”, which has the highest 
strength value),

2)	 threshold: this parameter determines whether the value 
should be written to a specific element of the matrix, or the 
item should be zero (the element is reset if the threshold 
value is less than the desired threshold for the matrix),

3)	 value: assigned to the specific matrix element, defined by 
the coding network inputs, if the network has the highest 
strength value, and the threshold output is greater than 
the desired threshold for this matrix.

Fig. 7 shows selected steps of „filling” the FSNA matrices by 
one of two coding networks, formed on the basis of information 
included in the chromosomes, evolving in two populations. 
Step 2 illustrates a situation in which the first coding neural 
network (defined by cNDM1) has a higher strength value and 
its threshold output is greater than the desired threshold for 
VBI. Therefore, the first coding network writes a value to 
a specified element of the matrix. Step 24 illustrates the case 
in which the second coding network is „stronger” (has higher 
strength value), but the network’s threshold value is less than 
the desired threshold for this matrix. In this case, the element 
specified by the coding network inputs obtains zero value. 



POLISH MARITIME RESEARCH, No 3/2017 9

Step 25 illustrates a situation similar to that which occurred 
in step 2, with the difference that in this case, the second 
element of the second matrix aNDM is filled. Generation of 
all the elements of the matrices requires iterations equal to 
the sum of elements in these matrices.

It can be seen that when using the CCGA-INE, the matrices 
consisting of even hundreds of parameters can be filled by 
means of information included in several chromosomes 
(depending on the number of populations).

In the next section, the anti-collision problem used to 
compare the TSK and the FSNA systems is described in 
details.

ANTI-COLLISION PROBLEM

ASSUMPTIONS

It was assumed that the information from an onboard 
navigation system, in particular about the detection of 
obstacles, was discretized in such a way that the USV anti-
collision system received the distances from the obstacles 
located in the seven sectors around the USV. The four sectors 
with 45° view angle were located in the fore part and the 
three sectors with 60° view angle located in the aft part 
of the USV (Figure 8). Therefore, the anti-collision system 
obtained information about other vessels in the form of 
distances to the closest vessels in designated sectors from x1 
to x7 (Figure 8). The sectors of detecting obstacles were limited 
in bearing and range of their view. The value of the view 
range was chosen experimentally. The anti-collision system 
provided desired course to the target ψs. Based on information 
about the obstacles and the target, the anti-collision system 
calculated the change of course Δψ and the change of advance 
velocity ∆Va. The advance velocity is a velocity measured in 
a longitudinal axis of symmetry of the USV.

Fig. 8. Inputs and outputs of anti-collision system: x1, x2 … x7 – distances from 
obstacles in sectors, ψs – desired course to the target, Δψ – the change of course 

and DVa – the change of velocity USV

SCENARIOS

In order to tune and then validate the TSK and the FSNA 
anti-collision systems, scenarios with increased difficulty 
level were designed. Each scenario contained information 
about starting and target positions of the USV and motion 
vectors of the ten other vessels, operating in the same area. 
The distance that had to be overcome by the USV was 
approximately 2 nautical miles. This distance is sufficient to 
deploy the collision obstacles. Due to USV dynamics [16], it 
was assumed that the anti-collision system took the decisions 
every 20 seconds. 

Each of ten potential collision vessels moved with one 
fixed course and velocity. In the first part of the scenarios, the 
vessels moved along safe trajectories (not on collision course 
with the USV). At the beginning, the USV had to „learn” to 
reach the target. In the next part of the scenarios, the number 
of units moving on collision courses were gradually increased. 
Moreover, the number of vessels that moved near the starting 
position and the target were also increased. Such vessels are 
not on collision course at the beginning of the simulation, 
but may be on collision course in subsequent moments after 
various changes of the USV course.

In the following scenarios, the starting and the target 
positions were changed in such a way that potential trajectories 
ran in different directions: north, north east, south, etc.

In order to avoid too complex trajectories of the USV, 
including incorrect maneuvers, e.g. multiple passage on 
circular trajectory, an excessive descent from desired trajectory, 
etc., timeout for the each scenario was implemented. The 
timeout was equal to 150% of the time needed for movement 
along a straight route from the starting point to the target 
with an average velocity of 10 knots.

To tune and then validate the anti-collision systems, 
respectively, 60 learning scenarios (including 30 simpler 
and 30 additional scenarios), and 30 validating scenarios 
were designed. In the validating scenarios, an additional 
difficulty was implemented, i.e. the changes of course of the 
vessels were added.

EVALUATION FUNCTION

The scenarios are used for training and then validating 
sequentially, i.e. the first scenario was followed by a second, 
then the third, etc. Scenario finished at the moment of 
collision or after achieving the maximum time for the 
scenario (the maximal number of decisions).

The behavior of the n-th anti-collision system in 60 learning 
scenarios was evaluated using the fitness function F(FLn). The 
function F(FLn) was calculated as the sum of the rewards 
gained in all the scenarios. The following form of the reward 
function f in m-th scenario was applied [15]:
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where k is a scenario number, FLn is an estimated n-th FSNA, 
dt is a distance to the target at the end of scenario, and k is 
a penalty for change of course greater than 90°, if the distance 
to the closest obstacle is larger than 0.15 nautical mile. 
Additionally, Imax is a maximal number of decision, which the 
USV can take moving to the target, I is a number of decisions 
taken by the anti-collision system, and Rt is a reward for the 
USV reaching target (Rt = 100).

The function (2) is calculated for the following cases:
a)	 collision occurred,
b)	USV did not reach the target, but did not collide with other 

vessels; at the end of simulation, the USV was located at the 
distance larger than 1 nautical mile from the target,

c)	 USV did not reach the target, but did not collide with 
other vessels; at the end of simulation, the USV was located 
at the distance less than or equal to 1 nautical mile from 
the target,

d)	USV reached the target.
The occurrence of collisions automatically stops the 

process of evaluating the TSK or the FSNA systems in the m-th 
scenario with the value of the function Fm(FLn) equal to zero. 
In the case where the USV did not collide with other vessels 
and did not reach the target, the evaluation is dependent on 
the distance to the target at the end of simulation, and the 
number of forbidden maneuvers (change of course greater 
than 90°, if the distance to the closest obstacle is larger than 
0.15 nautical miles). Tuning process of the anti-collision 
system is determinated by the evaluation function. The greater 
the function result is, the more effective anti-collision system 
is tuned.

The whole process of tuning the TSK or the FSNA systems 
is terminated, when the evaluation function reaches a value 
greater than or equal to 6000, i.e. when the USV reached 
the target without collision in 60 learning scenarios. In the 
research presented in the next section, 60,000 iterations were 
applied as the maximum number of iterations for the tuning 
process.

NUMERICAL RESEARCH

MODEL OF THE VESSEL MOTION

To simulate horizontal plane motion of the USV and other 
vessels control-oriented model of marine object was applied 
[13]. The model was described in the following matrix form:

SV = [Pij]6 x 3 (3)

where Pi1 includes the changes of course Δψkl, Pi2 contains the 
changes of coordinate x: Δxkl, and Pi3 includes the changes 
of coordinate y: Δykl. 

Elements of the matrices were registered in response to 
desired course ψψ ∆⋅= kz

k  (where k = 1..36 and °=∆ 5ψ
), in l-th time step tltl ∆⋅=  (where l = 1..60 and Δt = 0,5 s), 
for advance velocities ViVi ∆⋅=  (where i  =  1..5 and 
ΔV = 5 knots).

For USV and the other vessels motion simulation, 5 discrete 
advance velocities were applied (5, 10, …, 25 knots), and 
the state vector of the vehicle and vessels were reduced to 
3 parameters: course, coordinate x and coordinate y. The 
more details about the model was included in [13].

Parameters of the model were registered based on the 
classical nonlinear model [2]. To control the course of the USV 
and the vessels, slide mode controllers were used, which were 
described in details in [16].

STRUCTURE OF THE TSK AND THE FSNA SYSTEMS

In the structure of the fuzzy system, the following three 
components should be determined: fuzzy sets, fuzzy rules 
and fuzzy operation [1,19]. Based on the earlier research [15], 
fuzzy sets for inputs and outputs, illustrated in Figure 9, were 
applied. The same universe of discourse was used for all the 
inputs (x1, x2 … x7 – distances from obstacles in sectors, ψs – 
desired course to the target) and the same for all the outputs 
(Δψ – the change of course and ΔVa  – the change of velocity 
USV). The whole structure of the anti-collision system of 
USV is illustrated in Figure 8.

Figure 9. Fuzzy sets for inputs (gaussian functions) and output (singletons) 
of the TSK anti-collision system 

In the TSK anti-collision system, fuzzy rules were tuned 
by the evolutionary method. 
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It was assumed that crisp values of the outputs were 
calculated using a weighted sum of the rules (wtsum) [1]. 
For this purpose, it is important to calculate the weight of 
the i-th rule and the crisp value of the output of the i-th 
implication. Calculation of rules weights is usually carried 
out using a logical product (min) or an algebraic product 
(product) [1]. Due to the lack of a proper solution of the TSK 
system using operation (product), in addition to the operation 
(min), an algebraic sum (sum) was applied [1] (usually (sum) 
is used for an alternative of prerequisites). In the case of using 
singletons on the outputs, the crisp value of the output of 
the i-th implication is reduced to the constant value of the 
proper singleton.

For the TSK system mentioned above preliminary studies 
were carried out for the simpler 30 learning scenarios. 
Satisfactory results were not received. Therefore, in the TSK 
system, additional improvement was introduced, i.e. rules 
with the same singletons were aggregated. For this purpose, 
two optional operations were applied: a logical sum (max) and 
the algebraic sum (sum) [1]. In this case, the weighted sum 
of rules operation (wtsum) was also modified in such a way 
that it did not work on all the rules, but on the aggregated 
rules for the same singletons in conclusions. In this case, 
the maximum number of components of the weighted sum 
is equal to the number of singletons in the output variable.

According to the description included in Section 2, in 
the FSNA, both fuzzy sets and rules were tuned in the 
evolutionary way. 

In the FSNA, crisp values on the outputs were achieved 
in the result of operation of the aggregating neural network. 
The neural network is “fed” on the inputs with the weights 
of the fuzzy rules. To calculate the weight of rule, the same 
operations were applied as for the TSK system, i.e. the 
logical product (min) for a conjunction of prerequisites or 
the algebraic sum (sum) for an alternative of prerequisites.

TSK SYSTEM LEARNING AND VALIDATION 

The learning phase of the TSK system was divided into 
two parts. The result of the first part was that the fuzzy 
systems learned by means of 30 simpler learning scenarios, 
described in [15]. The results of the second part were presented 
in the Table 1. The learning process was performed based 
on 30 simpler and 30 additional learning scenarios (in total 
60 learning scenarios). 

The main aim of the process was to compare different 
variants of the fuzzy system. All variants had the same 
distribution of the fuzzy sets, presented in the Figure 9. The 
variants differed in the maximum number of fuzzy rules (10 
or 20) and applied fuzzy operations (min – sum, sum – sum, 
min – max, sum – max), respectively for (the calculation 
of the rules weights – the aggregation rules with the same 
singletons).

Tab. 1.	 Results of the learning for TSK system for the anti-collision problem 
defined by 60 learning scenarios

Variants of TSK system Learning

Aggre-
gation of 
prerequi-

sities

Aggre-
gation of 
identical 

singletons

Number 
of rules 

Average 
total 

evaluation 
function

Maximal 
total 

evaluation 
function

1 min sum 10 3416 3607

2 min max 10 3252 3605

3 sum sum 10 3299 3606

4 sum max 10 3393 3606

5 min sum 20 3466 3506

6 min max 20 3605 3606

7 sum sum 20 3112 3606

8 sum max 20 3436 3606

According to the results of the first part of the learning 
process, following parameters of the evolutionary method 
were used: the mutation probability equal to 0.045 and 
the crossover probability equal to 0.4. Similarly to the 
previous research [15], each variant of the fuzzy system was 
evolutionary tuned 30 times. Therefore, the Table 1 presents 
the results of the evolution in the form of the average and the 
maximum values of the total evaluation function achieved 
in 30 runs. 
Tab. 2.	 Results of validating the TSK system for the anti-collision problem in 

30 scenarios

Variants of TSK system Validation

Aggre-gation 
of prerequi-

sities

Aggre-gation 
of identical 
singletons

Number of 
rules 

Average total 
evaluation 
function

Maximal 
total 

evaluation 
function

1 min sum 10 1215 1702

2 min max 10 1462 1704

3 sum sum 10 1170 1805

4 sum max 10 1248 1805

5 min sum 20 1556 1706

6 min max 20 1605 2303

7 sum sum 20 1269 2103

8 sum max 20 1229 1902

Based on the results of evolutionary tuning of the TSK 
system for 60 learning scenarios (Table 1), this fuzzy system 
was not able to “learn” new scenarios. Evolution in the best 
case, stopped at scenario no. 36 and was not able to cope with 
the collision situation defined by scenario no. 37.

Despite the lack of even one TSK system that would have 
successfully avoided a collision in all 60 scenarios, to compare 
the TSK system with the FSNA, it was decided to validate the 
obtained TSK solutions by means of 30 validating scenarios.

Based on the results of validating tests presented in the 
Table 2, it is worth noting that the inability to tune the TSK 
fuzzy system in the learning phase, resulted in achieving 
poor evaluation in the validation phase.
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FSNA LEARNING AND VALIDATION

The learning and validating processes of the FSNA were 
carried out by means of the learning and validating scenarios, 
the same as were used for the TSK system. Based on the results 
of the previous research [15], the subsequent parameters for 
validation tests were used:
1)	 the mutation probability 0.045,
2)	 the crossover probability 0.4,
3)	the operation (min) for the aggregation of prerequisites.

The results of tuning 16 FSNA variants were presented 
in Table 3. 
Tab 3.	 Results of learning the FSNA for the anti-collision problem defined 

by 60 learning scenarios

 

FSNA variants Learning

Number of 
fuzzy rules

Number 
of hidden 
neurons

Average 
total 

evaluation 
function

Maximal 
total 

evaluation 
function

Number of 
success-
full runs

1

3

0 4094 5008 4

2 2 4580 5309 0

3 5 5095 6009 0

4 8 1464 2404 2

5

6

0 4521 6009 2

6 2 4735 6011 2

7 5 4581 6011 4

8 8 1957 2404 6

9

8

0 4085 5008 0

10 2 4464 5819 0

11 5 4264 6011 0

12 8 1638 2304 1

13

10

0 4093 5608 0

14 2 3993 4308 0

15 5 5066 6013 0

16 8 1549 2403 2

The variants differed in the number of fuzzy rules (3, 6, 8 
and 10) and the number of hidden neurons in the aggregating 
neural network (0, 2, 5 and 8 neurons).

As in previous studies, each FSNA variant evolved during 
30 runs. The results of tuning various options FSNA fuzzy 
system were illustrated in Table 3 as the average and the 
maximum overall evaluation functions. In addition, each 
FSNA variant was evaluated by an additional index, i.e. the 
number of successful runs (ended without collision).

The best learning result was achieved for the FSNA variant 
with 6 fuzzy rules and 8 hidden neurons in the aggregation 
network. For 30 runs of evolution for this variant, 6 runs 
were successful (the collision was avoided in all 60 learning 
scenarios), i.e. efficiency of tuning method was 20%. 

Based on the results of evolution (Table 3), large influence 
of neural network for the fuzzy rules aggregation on 
the operation of the entire FSNA can be seen. Increasing 

the number of hidden neurons in these networks leads to 
better results (the average total evaluation function and the 
number of successful runs increased). Due to the condition 
of finishing the tuning process in a specified finite time, no 
research to a larger number of hidden neurons was performed. 
Tab. 4.	 Results of validating the FSNA for the anti-collision problem 

in 30 scenarios

 

FSNA variants Validation

Number of 
fuzzy rules

Number 
of hidden 
neurons

Average total 
evaluation 
function

Maximal total 
evaluation 
function

1

3

0 735 1012

2 2 1917 2503

3 5 1946 2604

4 8 1946 2604

5

6

0 1977 2604

6 2 1977 2705

7 5 2037 2606

8 8 2037 2606

9

8

0 1550 2504

10 2 1550 2206

11 5 1449 2103

12 8 1449 2103

13

10

0 2060 2703

14 2 1531 2105

15 5 2018 2704

16 8 2018 2704

The verification tests were carried out for the obtained 
FSNA by means of 30 validating scenarios, the same as for the 
TSK system (Table 4). No FSNA was positively verified in all 
30 validating scenarios. The best solutions for anti-collision 
systems managed to avoid collisions in the 27 validating 
scenarios, i.e. the best solutions of the FSNA achieved an 
effectiveness of 90%.

It can be concluded that the solutions of FSNA that have 
evolved in 60 learning scenarios, are able to work effectively on 
a different data set than the training set. As mentioned earlier, 
an important element for success of the learning process is the 
selection of training data. In this case, the learning scenarios 
could be improved to represent a wider range of learning data.

EXAMPLES OF FSNA OPERATION

In Fig. 10 and 12, the trajectories of the USV and 10 other 
vessels were illustrated for scenarios no. 14 and 10, respectively 
with collision and without collision. The USV starting position 
was marked by a circle, and the starting positions of the other 
vessels were marked by asterisk. Target position of the USV 
is the position with coordinates (4000 m, 4000 m), which is 
placed outside the space visualized in Figure 10.



POLISH MARITIME RESEARCH, No 3/2017 13

Fig. 10. Trajectories of the USV (red solid line, a circle – starting position), 
and the vessels (blue dotted lines, asterisks – starting positions) in scenario 

with collision (black arrow)

In Fig. 11, it can be seen that the USV initially moved 
straight to the target, then at approx. 170 s of simulation 
performed a maneuver avoiding a collision with one of the 
other vessels. Next, for longer than 200 seconds, the USV 
maneuvered to the port and to the starboard, trying to 
avoid collision and to cover the shortest path to the target. 
At approx. 460 s of simulation, the USV collided with one 
of the other vessels.

Fig. 11. Change in time of the USV desired course  
in the scenario with collision

In Fig. 12, it can be seen that the USV made several changes 
of its course during approx. 500  s of simulation. These 
manoeuvers enabled the USV to leave the area of potential 
collisions, and then to reach the target without collision.

Fig. 12. Trajectories of the USV (red, solid line, a circle – starting position, 
a wheel – target position) and the vessels (blue, dotted lines, asterisks – starting 

positions) in the scenario without collision

CONCLUSIONS

In the paper, the new neuro-fuzzy system called FSNA 
was presented. The FSNA is an improvement of the classical 
TSK system enriched with (1) integration of fuzzy rules with 
membership functions, and (2) aggregation of fuzzy rules 
by an artificial neural network. The FSNA was tuned by the 
evolutionary method named CCGA-INE. The FSNA correctly 
learned and then was verified by means of respectively, 
the learning and validating scenarios in the anti-collision 
problem. 

It is worth mentioning that the CCGA-INE is a quite efficient 
but a time-consuming method taking into consideration the 
learning process. The one variant of FSNA was received after 
12-24 hours of a one core 3 GHz processor work. The research 
was conducted using BSD Operating System. Despite the long 
process of learning, the taught and verified variant of the 
FSNA can be used as a control system in time close to real 
using a medium class hardware platform.

The FSNA was compared with its predecessor the classical 
TSK system. The classical TSK system with base of rules 
tuned in evolutionary way (CCGA-INE) poorly generalized 
learned anti-collision behaviour. The classical system showed 
less effectiveness, both in the learning and validating phases. 
The selected solutions of FSNA obtained during an evolution 
process (Table 4) guarantee good behaviour for the validation 
scenarios. It should be noted that in the case of new scenarios, 
they always can be used for precise tuning of the FSNA 
(an additional learning process). 

In the future, the following improvements and research 
are proposed to implement and test:
1)	 Implementation of the FSNA system based on Mamdani 

type fuzzy system,
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2) 	Examination of the impact of an artificial neural 
network at the input of the fuzzy system, e.g. to aggregate 
prerequisites of the fuzzy rules,

3) 	FSNA testing in other control problems, e.g. to control 
a new marine control object – biomimetic underwater 
vehicle.
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