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ABSTRACT

The paper presents results of systematic tests of contraction and thermal expansion coefficients of materials based 
on polymer composites. The information on the above material properties is essential both at the design stage and during 
the use of finished products. Components for the samples were selected in such a way as to represent typical materials 
used for production of construction and moulding elements. The performed tests made it possible to monitor the analysed 
parameters at different stages of the technological process. 
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INTRODUCTION

Fibre reinforced polymer composite is the material 
with a relatively short history, as compared to traditional 
construction materials (wood, metals, concrete). Its 
development began at the turn of 1930s and 1940s [1]. This 
material is characterised by small volume density, relatively 
high     mechanical strength and stiffness, high resistance to 
weather conditions and chemical agents, and   high flexibility 
for geometry shaping. These properties make the composites 
very applicable in the shipbuilding industry [2,3]. They 
are used for production of various components and entire 
watercraft units, such as, for instance, the ferry Vision of The 
Fjords shown in Fig. 1.

Polymer composites are also appreciated and used 
in production of cars, airplanes, sports equipment, 
electrotechnical elements, etc. This material is also being 

more and more frequently used in civil engineering, in the 
form of construction profiles, reinforcement elements, and 
sandwich structures [4-7]. 

The structure of composites comprises the matrix, 
most frequently made of polyester, vinyl or epoxy resins, 
and reinforcement, where glass and carbon fabrics are 
most popular materials. As a result of resin/reinforcement 
combination, so-called laminate is created. This laminate can 
be additionally used as a component of sandwich structure, 
with polyurethane foam (PU), polyethylene terephthalate 
foam (PET), or another material, honeycomb for instance, 
used as core filler.

Samples of selected composites were tested within the 
framework of the project which aimed at creating a footbridge 
with sandwich structure (Fig. 2) using the vacuum infusion 
technology, which is typical for production of yacht hulls, 
among other applications [8-10]. The implemented project 
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[11-13] included  a series of experimental, numerical and 
technological tests [14,15], which made it possible to monitor 
the entire process, from a preliminary concept to building 
a full-scale object. The finished footbridge was subjected 
to a series of static and dynamic tests [15,18] and technical 
monitoring [25] based on earlier gained experience [19-24].  

Fig. 1. Passenger ferry Vision of The Fjords

Fig. 2. Footbridge built on the Gdansk University of Technology campus 
territory within the framework of the project FOBRIDGE 

An essential aspect in designing and use of composite 
structures is analysing the effect of contraction and 
temperature on the finished product. Thermosetting resins 
used for production of composites experience chemical 
contraction during hardening and heat soaking processes. 
Methods to determine this parameter are divided into two 
groups: volumetric and non-volumetric. Representative 
measurement techniques for both groups are discussed in [26]. 
Numerous publications can be found in the literature which 
present results for the same resin [27-29]. On the other hand, 
determining contraction in finished composite elements is 
much more rarely analysed. The process itself is very complex, 
as it depends on percentage and direction of reinforcement. 
This phenomenon was analysed in [30], among other 
publications. The problem of contraction appearance at the 
production stage can affect both the dimensions and shape 
of the finished product, and the residual stresses activated 
during the hardening and heat soaking processes [31,32]. 
A similar situation is when assessing the linear thermal 
expansion coefficient for laminates and sandwich structures, 
as this parameter also depends of percentage and direction of 
reinforcement.  Its variability can be illustrated by the range 
of values 1,62 ÷ 2,7 m/m/oC given in the ASME (American 
Society of Mechanical Engineers) standard B31.3.

This paper analyses the assessment of contraction 
parameters and thermal expansion coefficients for selected 
resins, reinforcements, and cores used in sandwich structures. 
The tests were performed for construction materials, in 
versions of pure laminate and sandwich structure, and for 
moulding materials.

MATERIALS, PREPARING SAMPLES 

The tests were performed with materials which can be 
used for production of construction components of finished 
products, and production of moulds needed in the vacuum 
infusion technology. The following components were used 
for preparing samples:
a) glass reinforcements: glass fabrics E, bi-directional, 

stitched – BAT 800 [0/90], GBX 800 [45/-45], and glass 
mats E – CSM 300, CSM 450,

b) sandwich materials: construction foam PU of 50 mm in 
thickness, and Lantor Coremat mat of 3 mm in thickness 
(used in production of moulds),

c) construction resins: vinyl ester resin BÜFA – Firestop 
S 440, and vinyl ester resin POLIMAL – VE-2 MM,

d) moulding resins: vinyl ester resin POLYLITE – 410-900, 
and polyester resin Norester – RM 2000.
Using the above materials, five plates of dimensions 

of 200×200 mm were prepared. All samples were made using 
manual laminating technology (Fig. 3). Detailed specifications 
of plates are collated in Table 1.

Fig. 3. Making test samples 

Tab. 1. Specifications of samples 

Sample 
label Resin Sequence of layers 

P1 BÜFA - Firestop S 440
construction resin

1 × CSM 300
1 × BAT 800
2 × GBX 800
1 × BAT 800

PU foam
1 × BAT 800
2 × GBX 800
1 × BAT 800
1 × CSM 450

P2 BÜFA - Firestop S 440
construction resin

1 × CSM 300
1 × BAT 800
2 × GBX 800
1 × BAT 800
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Sample 
label Resin Sequence of layers 

P3 POLIMAL - VE-2 MM
construction resin

1 × CSM 300
1 × BAT 800
2 × GBX 800
1 × BAT 800

P4 POLYLITE - 410-900
moulding resin

1 × CSM 300
3 × CSM 450

Coremat 
3 × CSM 450

P5 Norester - RM 2000
moulding resin

1 × CSM 300
3 × CSM 450

Coremat 
3 × CSM 450

MEASUREMENT TECHNIQUE 

To enable measurements of contraction and thermal 
expansion coefficient, four benchmarks were placed on 
each sample, thus creating two deformation measurement 
bases of 100 mm in length and perpendicular to each other. 
The benchmarks were embedded into the plate before resin 
gelation (Fig. 4).

Fig. 4. Benchmarks placed on samples 

The length changes were measured using an electronic 
extensometer Mitutoyo with resolution of up to 0,001 mm 
(Fig.  5). Additionally, a pyrometer (surface infrared 
thermometer) TQC model TE1005 was used in tests which 
aimed at determining the linear thermal expansion coefficient. 
The measurement range of this pyrometer was –50oC ÷ 750oC 
and the resolution was 0,1oC.

Fig. 5. Extensometer used for length change measurement 

CONTRACTION MEASUREMENT AFTER 
SAMPLE PREPARATION 

Firstly, the sample contraction was measured which 
appeared as a result of resin gelation. During the tests, the 
samples remained in the room temperature. The deformation 
was measured once a day during first four days after plate 
preparation. During this time interval the contraction 
stabilised. To check whether the samples do not undergo 
further contraction in a longer time interval, the contraction 
was additionally measured after two weeks and after one 
month. The results are shown in Fig. 6. For each plate, 
permanent deformation directly after preparation, εperm,0, was 
determined. The final value was calculated as the arithmetic 
mean from two measurements. The results are collated in 
Table 2.

Fig. 6. Measurement of contraction deformations after preparation 
of samples P1-P5
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Tab. 2. Permanent contraction deformations directly after sample preparation  

Sample label Resin εperm,0 [‰]

P1 Firestop S 440 -0,18

P2 Firestop S 440 -0,18

P3 POLIMAL - VE-2 MM -0,35

P4 POLYLITE - 410-900 -0,24

P5 Norester - RM 2000 -0,26

Contraction and linear thermal expansion coefficient 
measurements during heat soaking 

The next test step was measuring the contraction and 
linear thermal expansion coefficient of the samples during 
and after their heat soaking. The procedure of 10-hour heat 
soaking in the temperature of 90oC was divided into three 
phases. The initial sample cooling was done as early as after 
30 minutes of soaking, the second – after basic soaking, i.e. 
after 9,5 hours, and the third – after process completion, 
i.e. after 10 hours.

MEASUREMENT AFTER FIRST HEAT SOAKING PHASE 

The samples were placed inside the thermal chamber for 
30 min. Then, after removing them from the chamber, the 
deformation and surface temperature of the samples were 
simultaneously measured during sample cooling. The results 
are shown in Fig. 7. For each plate, permanent deformation 
after first heating, εperm,1, was determined. Its final value was 
calculated as the arithmetic mean from two measurements. 
Another parameter determined for each plate at this stage was 
the linear thermal expansion coefficient after first heating, 
α1. Here, the final value was also calculated as the arithmetic 
mean from two measurements, for which the least squares 
regression line was also determined. The results are collated 
in Table 3.
Tab. 3. Permanent contraction deformations and linear thermal expansion 

coefficients after first heat soaking phase 

Sample label Resin εperm,1 [‰] a1 [m/m/oC]

P1 Firestop S 440 -0,80 2,38e-5

P2 Firestop S 440 -0,81 1,92e-5

P3 POLIMAL - VE-2 MM -1,19 2,62e-5

P4 POLYLITE - 410-900 -0,78 2,58e-5

P5 Norester - RM 2000 -0,22 1,33e-5

Fig. 7. Results of deformation measurements during cooling of samples P1-P5 
after first heat soaking phase 

MEASUREMENT AFTER SECOND HEAT SOAKING 
PHASE 

In the second heat soaking phase, the samples underwent 
basic soaking which lasted 9 hours. After removing them 
from the thermal chamber, the deformation and surface 
temperature of the samples were simultaneously measured 
during sample cooling. For each plate, permanent deformation 
after basic 9-hour heating, εperm,2 and the linear thermal 
expansion coefficient α2 were determined. The final values 
were calculated in the identical way as in the previous 
measurement. The results are shown in Fig. 8 and Table 4.
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Tab. 4. Permanent contraction deformations and linear thermal expansion 
coefficients after second heat soaking phase 

Sample label Resin eperm,2 [‰] a2 [m/m/oC]

P1 Firestop S 440 -0,01 2,42e-5

P2 Firestop S 440 -0,09 1,81e-5

P3 POLIMAL - VE-2 MM -0,07 2,50e-5

P4 POLYLITE - 410-900 -0,06 2,79e-5

P5 Norester - RM 2000 -0,25 1,64e-5

Fig. 8. Results of deformation measurements during cooling of samples P1-P5 
after second heat soaking phase 

MEASUREMENT AFTER THIRD HEAT SOAKING 
PHASE 

The final test step was measuring sample contraction 
during cooling after completion of the heat soaking process. 
For each plate, permanent deformation formed during the 
last 30-minute soaking stage, εperm,3, and the linear thermal 
expansion coefficient α3 were determined. The final values 
were calculated in the identical way as in the previous 
measurements.  The results are shown in Fig. 9 and Table 5.

Fig. 9. Results of deformation measurements during cooling of samples P1-P5 
after third heat soaking phase 

Tab. 5. Permanent contraction deformations and linear thermal expansion 
coefficients after third heat soaking phase 

Sample label Resin εperm,3 [‰] α3 [m/m/oC]

P1 Firestop S 440 -0,03 2,60e-5

P2 Firestop S 440 0,03 1,75e-5

P3 POLIMAL - VE-2 MM -0,14 2,43e-5

P4 POLYLITE - 410-900 -0,21 2,69e-5

P5 Norester - RM 2000 -0,10 1,50e-5

CONCLUSIONS 

The values of total permanent contraction deformation 
εperm created during the hardening and heat soaking processes 
are collated in Table 6. It can be noticed that in the case 
of construction resins (samples P1, P2, P3) the largest total 
contraction deformation was recorded for sample P3 (Resin 
POLIMAL - VE-2 MM), while for moulding resins (samples 
P4, P5) – for sample P4 (Resin POLYLITE - 410-900). After 
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analysing Tables 3-5, a conclusion can be made that the largest 
increase of contraction deformation takes place as early as 
after the first, preliminary heat soaking phase. This tendency 
was observed for all tested materials. Comparing results for 
samples P1 and P2 leads to the conclusion that, in both the 
independent form and as sandwich structure component, 
the laminate has very similar contraction deformation level 
at each analysis stage. 
Tab. 6. Permanent contraction deformations directly after sample preparation  

Sample label Resin εperm [‰]

P1 Firestop S 440 -1,02

P2 Firestop S 440 -1,05

P3 POLIMAL - VE-2 MM -1,75

P4 POLYLITE - 410-900 -1,29

P5 Norester - RM 2000 -0,83

The mean values of linear thermal expansion coefficient α 
from the results obtained at different test stages are shown in 
Table 7. Like for the contraction measurement, higher values 
(i.e. less favourable from the point of view of construction/
mould performance) were recorded for samples   P3 (Resin 
POLIMAL - VE-2 MM) and P4 (Resin POLYLITE - 410-900). 
When analysing the results obtained for samples P1 and P2 
we can conclude that incorporating the laminate into the 
sandwich structure increases the linear thermal expansion 
coefficient of the entire structure. 

Tab. 7. Mean values of linear thermal expansion coefficients 

Sample label Resin α [m/m/oC]

P1 Firestop S 440 2,47E-05

P2 Firestop S 440 1,83E-05

P3 POLIMAL - VE-2 MM 2,52E-05

P4 POLYLITE - 410-900 2,69E-05

P5 Norester - RM 2000 1,49E-05

What is also noteworthy is highest values of linear thermal 
expansion coefficients for all tested composites, as compared 
to traditional materials, such as metals, for instance. The 
above characteristic and the contraction phenomenon taking 
place in the composite material production process should 
be taken into account at the design and technological test 
stages. In cases of such large-scale elements as yacht hulls 
or building structures, the compatibility of real dimensions 
with design assumptions can be verified using, for instance, 
advanced photogrammetry techniques [33].
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