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ABSTRACT

Induced air pressure and resulting free surface profile due to air cushioning layer is studied. The study is mainly 
focused on 2D blunt circular bodies with constant downward speed. The problem is first solved for the air flow between 
the body and the free surface of the water. Then the results are employed to solve the problem for the water problem, 
numerically. Both air and water problem are assumed to be governed by Laplace potential equation. Depending on the 
induced pressure and velocity of the escaping air flow from cushioning layer, compressibility of the air is also included 
in the modeling. Gravitational acceleration is also included in the model. An iterative boundary element method 
is used for numerical solution of both air and water problems. Instantaneous pressure distribution and free surface 
profile are evaluated for different bodies. The results of calculation for large blunt bodies show that inviscid potential 
method can fairly approximate the problem for large blunt bodies. Additionally, the behavior of the air pressure for 
the very blunt body is impulsive and the magnitude of the peak pressure is in order of impact pressure of water entry. 
The obtained results are compared with analytical method. The comparison shows that as the bluntness of a body 
increases, the better agreement is concluded.
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INTRODUCTION

Hydrodynamic evaluation of several typesof marine 
vehicles are based onsolution of water entry problem. It is 
common to study a 3D geometry of a vessel by 2D sections 
along ship length. A 2D section of a ship is a classical water 
entry problem. The water entry problem may be solved 
analytically, numerically as well as by experiment. The 
water entry problem is correlated to some other phenomena 
which complicates the evaluation of the problem. One of these 
phenomena is the cushioning layer right before impact. As 
a body drops and get close to free surface of the water, air 
between body and the water surface may not scape and 
compressed as body closes to the surface. An air layer is 

formed between the body and free surface of the water. 
Based on the mass continuity, the velocity of escaping air 
flow from the layer exponentially increases as the body 
closes the surface. Since the gap layer is usually very narrow 
and the body momentum is generally high, the induced air 
pressure along the cushioning layeris very high. Physically, 
for the force balancein vertical direction, the free surface is 
deformed to balance the induced air pressure at the air-water 
interface. This deformation causes a multipoint impact rather 
than asingle point impact as it is assumed in most of water 
entry theories. Depending on the shape of impacting body 
and deformed free surface profile, some volume of air may 
be entrapped during entry. The cushioning layer reduces 
the impact speed as well as the hydrodynamic impact pressure 
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due to air drag and compression of entrapped air, respectively. 
Thus accurate prediction of maximum impact pressure 
requires considering the cushioning layer particularly for 
high speed impact of blunt bodies.

There are several researches on the topic mainly focused 
on the evaluation of impact pressure and free surface 
deformation in bubble dynamics and droplet impacts. The 
survey was started by Verhagen[1] who modeled the air 
layer using a channel flow problem with constant geometry 
of moving walls. He concluded that the lubrication equation[2]
may properly simulate the channel flow instead of traditional 
equations. The proposed model was just a case study and 
cannot be further developed for different geometries. The next 
significant try was made by Asryan[3]. He recommended two 
different formulation including inviscid incompressible and 
viscous compressible. Both models are available for initial 
stage of the body motion when the surface deformation 
isnegligible. Thus, the free surface deformation was not 
investigated. The obtained results overestimate the pressure 
and underestimate the air speed particularly at throat of the 
air gap layer. Wilson [4] suggested a non-dimensional 
asymptotic model to simulate the problem based on two 
dimensional Navier-Stokes equation. The model is initially 
stable but as the body gets closer to the free surface the results 
are unstable. This instability also occurred for blunter bodies. 
Hicks and Purvis [5] conducted a great series of experiments 
and analytical research on the problem. They studied the 
problem in all details primarily for a bubble impact onto 
liquid or solids and its resulting deformation due to presence 
of cushioning layer. Different parameters such as viscosity 
dissipation, compressibility, topography and the validity 
of the proposed models are fully discussed in their works. 
They employed different forms of lubrication equation for the 
air problem and potential flow for the bubble deformation. 
They validated the obtained results with some experimental 
research [8] and with different available theories. 

All studies show that the dimensional analysis generally 
controls the problem and its corresponding governing 
equation. Different research were also made on this analysis 
to provide some better understanding of the problem such 
as those carried out by Mandre and Brenner [9] and Smith 
et. all[10]. They introduced different time and length scales 
based on the different configuration of the problem. On 
that basis, they concluded which governing equations such 
as lubrication equation, incompressible potential flow and 
compressible flow are applicable. Some experimental studies 
also investigated different applications of cushioning problem. 
Two distinctive experimental researches are those carried 
out by Marston et. all[11] and Tran et. all[12]. Both studies 
were concentrated on cushioning layer and the resulting air 
entrapment for small bodies. Some unique visualization and 
precise measurement were reported. One of the interesting 
tests results is to determine a scaling law for non-dimensional 
volume of air entrapment. This scaling simply implies that 
the volume of air entrapment depends to the Stokes number 
of the flow. This relation is changed for different regimes 
of the flows. There are also several research to investigate the 

problem such as those conducted by Lewison and Maclean 
[13], Thoroddsen et. all[14] and Bouwhuis et. all[15] which 
have different contribution to the problem consideration.

This study, as a relatively simple approach, represents a fully 
potential flow for both air and water problem and disregards 
the lubrication equation for very narrow air layer. Therefore 
the validity of the formulation is limited to high speed impact 
of blunt bodies. A fast and practical boundary element method 
is employed to evaluate all desired parameters of the problem. 
The proposed method can be efficiently used for developing 
a commercial software in full prediction of water impact 
including air cushioning effects. 

FORMULATION

The present model investigates the cushioning problem 
in water entry of blunt body such as depicted in Figure 1. 
A blunt body with downward speed of v0 moves toward 
to the water free surface which is initially at the rest. The 
downward speed is assumed to be constant and vertical, 
for the sake of simplicity. Since the body is essentially blunt 
and its speed is assumed to be high enough, the dominant 
phenomenonforfree surface deformation is normal pressure 
balance. Therefore the viscosity is neglected for both air and 
water problem. Two length scales are defined here to check 
the model validity as depicted in Figure 1. The first one in 
horizontal direction and shows the maximum length of 
disturbed free surface which is called L. The second length 
scale indicates the maximum depth of free surface, H, due to 
air pressure. The present formulation is not valid when H<<L. 
It may be shown that when H<<L, the viscous terms cannot 
be neglected anymore. 

Fig. 1. Problem definition, the free surface profile is schematic and exaggerated

According to the problem configuration, both flows are 
assumed to be potential. The water flow remains always 
incompressible. Thus the governing equation in the water 
flow is the Laplace equation. 

(1)
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The governing equation for the air flow is also the Laplace 
equation, since it is incompressible. However, as the body is 
very close to the free surface, high pressure may be induced 
to the air layer and the escaping speed of air flow considerably 
increases as a result. At this condition, the air compressibility 
should be taken into account. From Euler equation in term 
of differentials, the pressure and momentum correlated to 
each other.

(2)

Where V is the total velocity. This equation is independent 
to the flow directions for the problem under consideration. 
Thus, the velocity components can be evaluated from potential 
equations.

(3)

The flow is assumed to be isentropic and the air fluid is an 
ideal gas. So, the pressure gradient is a function of density 
gradient.

(4)

where c is the local speed of the sound in the air flow. 
Substituting the pressure gradient with density gradient 
results in:

(5)

Continuity equation is also always valid for both 
compressible and incompressible f low. Substituting 
the velocity potential in continuity equation yields:

(6)

Removing density differential from Euler and continuity 
equation results in the final governing equation of compressible 
potential flow:

(7)

and

(8)

where c0 and k are stagnation local speed of sound and ratio 
of air specific heat, respectively. The derived governing 

equation is nonlinear partial differential equation with 
only one unknown parameter in term of flow potential. This 
equation can be solved numerically. However, due to moving 
free surface profile, the solution is not easy. To overcome this 
drawback, the nonlinear PDE is linearized. One can employ 
a perturbation analysis for linearization of the problem. The 
perturbation velocity potential can be defined as  
where  and  are total and uniform velocity potential. 
Perturbation velocity components can also be evaluated 
similarly as  and . For vertical 
downward speed of the body the uniform velocity is the body 
velocity. To substitute the perturbation parameters in the 
governing equation, local speed of sound should be stated as 
a function of perturbation velocity components. Such a task 
is carried out employing stagnation form of energy equation:

(9)

Mach number of uniform flow is very small in comparison 
with the perturbation velocity components. Substituting the 
local speed of sound from energy equation into the governing 
equation yields.

(10)

The derived equation is a linear partial differential equation 
but in terms of perturbation potentials. This equation can 
be transformed from physical domain to a computational 
domain byintroducing new variables.

(11)

This transformation just changes the horizontal coordinate 
system and does not change the behavior of the equation. 
Using chain rule of differentiation, one can find new 
differentials:

(12)

Recalling the new parameters into the governing equation 
yields:

(13)

This is a new form of Laplace equation for transformed 
perturbation velocity. Now, the air flow problem is always 
governed by Laplace equation for incompressible potential 
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flow, Equation 1, and another one for compressible potential 
flow in transformed computational domain, Equation 13. 
This boundary value problem can be solved if boundary 
condition at all boundaries are known. Since the geometry 
of the problem is symmetric, the solution of the problem 
is carried out for a half space. The boundary condition on 
the body is no flux boundary condition.

(14)

where n is the normal vector pointing outward the body 
surface. On the free surface, both kinetic and kinematic free 
surface boundary condition should be satisfied. 

(15)

(16)

here σ, η, Pa and ρw are air-water surface tension, free surface 
profile, air pressure on the interface and water density, 
respectively. The potential vanishes for far field condition.

(17)

The free surface profile is assumed to be at rest as an initial 
condition or η(x, 0) = 0. Similar boundary conditions can 
be also derived for the water problem and a transformed 
form of compressible potential flow. The boundary condition 
on the water bed can be a wall or a far field condition. It can 
be shown for a deep water problem,both boundary conditions 
result in the same potentials. Although the water is deep 
enough, the problem can be also solved for a shallow water 
by adjusting the height of symmetry line. At this condition 
the water bed boundary condition can only be wall boundary 
condition not a far-field one.

NUMERICAL IMPLEMENTATION:

Depending on the problem configuration and the 
computational regions, the problem is governed by three 
different governing equation including an incompressible 
potential equation for air flow, an incompressible potential 
equation for water problem and finally a compressible 
potential flow for high speed escaping air flow. All of the 
governing equations are in general form of Laplace equation. 
The most common and practical method of solving such 
an equation is to employ boundary element method. The 
numerical solution is started by incompressible potential air 
flow. First the boundaries of the problem are discretized into 
linear elements. The important boundaries are Γ1, Γ2 and Γ3 
indicating the body, the symmetry line and the free surface. 

There is also a fourth boundary that closes the problem 
domain to the farfield boundary condition. 

Fig. 2. Computational domain and the main boundaries

The elements are constant and linear. So there is one 
integration point on the middle of each element called the 
point q. It can be readily shown that for any in-domain 
arbitrary point such as P, the potential can be related to 
distributed sources on each element using second identity 
of Green’sTheoremin form of an integral equation.

(18)

where λ is the fundamental solution of Laplace equation for 
two-dimensional problem.

(19)

and  is the distance vector. The integral equation 
can be represented in summation of influence coefficients 
and  assuming constant distribution of potential on each 
element [16].

(20)

where N is the total number of elements. The influence 
coefficients are only functions of the problem geometry and 
they are known. The problem is a mixed Dirichlet-Neumann 
boundary condition. The number of known and unknown 
parameters are the same and the problem changes to a system 
of algebraic equations. So, a linear system of  algebraic 
equations can be rearranged to find unknowns. The numerical 
solution starts similar to all linear constant boundary element 
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method. At the first time step the initial position of the body 
and its downward velocity are known. Additionally, the initial 
free surface profile is at the rest. The solution of the problem 
at the first time step results in a potential fields in the air 
flow. Furthermore, the potentials on the free surface are also 
evaluated. For updating the free surface profile, it is needed 
to have the data of the next time step. At the first time step 
the free surface is assumed to be a wall boundary condition, 
for the sake of simplicity. This assumption is only valid for 
the first time step. The problem is similarly solved for the 
second time step with updated position of the body. Once the 
new values of the potentials are found, the time derivatives 
of the potential can be easily estimated for reasonably small 
time increments. 

(21)

If the time derivatives of the flow potentials are estimated, 
the induced air pressure in the air layer and particularly on 
the free surface is calculated by using unsteady Bernoulli 
equation. 

(22)

The potential gradients which evaluate the velocity 
components can be estimated using finite difference method. 
However, these components can be directly evaluated using 
following equations to remove all disadvantages of finite 
difference method.

(23)

(24)

Figure 3illustrates typical non-dimensional velocity 
components using Equations 23 and 24.
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Fig. 3. Typical velocity components on the free surface interface

After the second time step, the induced air pressure on the 
free surface is known and the numerical solution of the water 
problem can be started. The primary boundary conditions 
of the water problem is the symmetry line and the free surface. 
There is also another boundary condition which closes the 
domain with far-field boundary condition. This domain is 
not included in the solution because the BEM is independent 
of far-field boundary condition in the present problem. From 
kinetic boundary condition, the induced air pressure in each 
time step is main source of disturbance in the water problem. 
Again, the number of known and unknown parameters 
for the water problem is the same and the system of linear 
algebraic equations can be solved using different method 
such as Gauss–Seidel method. The water problem is solved 
at the current time step of the air problem. Once the water 
problem is also solve, the free surface profile is updated using 
velocity component of water problem that estimated from 
solution of water flow. At the first and second time step, the 
boundary condition on the free surface is set to free slip 
condition. In other words, tangential derivatives of the air 
and water potentials, s, are not necessarily the same on the 
free surface. Therefore, the following kinematic free surface 
boundary condition readily concluded which must be satisfied 
on the free surface at each time step.

(25)

here the subscripts a and wdepict the air and water flows, 
respectively. Moreover, kinetic boundary condition simply 
relates the air and water pressure at the interface considering 
the surface tension at two firs time steps. 

(26)

After updating the free surface profile and the body 
position, the numerical solution of the problem at the third 
time step is started and continues. The proposed numerical 
solution in the present model may called a weakly coupled 
method between air and water flows. At each time step the 
pressure on the free surface is evaluated from air problem 
whereas the free surface profile updated from the water 
problem. After updating the free surface profile the estimated 
pressure from the air flow is corrected using parameters water 
potentials. This corrected pressure field on the interface is 
used as a boundary condition for the air problem at the next 
time step.It is worth noting that the all of time derivatives 
are evaluated using a backward time differencing scheme. So, 
the time marching is not dependent on the next time step. 
Therefore, the updated value of potentials can be computed 
as following.

(27)
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(28)

where the superscript n indicates the current time step. The 
value of time increments for the air problem and the water 
problem must be the same but not necessarily uniform.

The numerical solution of the problem for the incompressible 
air flow as well as water problem using boundary element 
method is fully discussed. The only remaining governing 
equation is the compressible perturbation Laplace equation. 
Generally, the numerical procedure is the same. However, 
special cares should be taken for appropriate transformation 
of all parameters. Although, the coordinates are transformed 
into a different computational domain, the discretization and 
numerical implementation is the same. The solver always 
check the maximum Mach number of air flow especially 
at the throat of the gap layer. Once it exceeds 0.3, the solver 
change the governing equation from an incompressible 
potential regime to compressible potential flow. To avoid any 
discontinuity on the obtained results, there is an asymptotic 
criteria to check the results when the governing equation 
of the air flow is changed. According to this criteria the time 
derivative of the pressure on the any arbitrary line such as 
the interface should be the same at one time step before and 
after changing of governing equation. Using Taylor expansion 
these pressure can be stated as follows.

(29)

(30)

where Δt– and Δt+ are just one time step before and after 
the time that the governing equation is changed. The time 
stepwhere numerical method switches from incompressible 
potential regime to compressible potential regime is indicated 
by ts.In other word, the time derivatives of the pressure shoul 
be the same when Δt → 0. If these time derivatives evaluated 
using backward time differncing the criterai yields:

(31)

where ε is a minimum acceptable deviation which is dependent 
on the problem configuration. If the solver cannot find the 
solution for satisfying the criteria, it changes the governing 
equation as the Mach number exceeds 0.3. 

The boundary element method is very sensitive to the 
element size especially when the main source of the disturbance 
is close to boundaries. At this condition, the element size should 
be reasonably small enough to resultastable solution. Similar 
problem also occurs for choosing the proper values of time step. 
The time increments are determined based on the Courant-
Friedrichs-Lowery (CFL) criterion. If the time increment is not 
selected carefully, the numerical solution suddenly diverges 
for transformed compressible potential flow. 

RESULTS AND DISCUSSIONS:

The present model is developed for large blunt bodies. 
The main interest is on the common ship sections. Investigation 
of the air cushioning problem for large ship sections especially 
during slamming is the main motivation of this study. The 
common ship sections start from a nearly circular bulbous 
bow section at the bow to the approximately flat sections 
at the fore part of the ship. All of these sections are known as 
blunt sections. To consider all shapes and checking the model 
response to the body curvature, the geometry of impacting 
body is first a circle which gradually converts to a flat ellipse 
as shown in Figure 4. The bluntness of the body is defined as 
ζ = a/b and starts from unity for the circle and continues to 
10 for a flat ellipse. There are 10 cases corresponding to each 
integer value of ζ.

Fig. 4. General representation of the impacting blunt bodies

The numerical simulation starts with a circle and ends with 
the final flat ellipse. However, only two sets of the results are 
presented here, for the sake of brevity. The primarily results 
include the pressure distribution and free surface deformation. 
Figure 5 depicts pressure distribution for an ellipse with ζ = 3 
and and v0 = 1 m/s. The breadth of all sections in the present 
models is assumed to be the same, 2a = 1. Additionally, the 
horizontal direction is presented in non-dimensional form 
by dividing on the horizontal length scale. Corresponding 
free surface deformation is also illustrated in Figure 6. 
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Fig. 5. Pressure distribution for an ellipse with ζ = 3 and v0 = 1 m/s at three 
consecutive time steps with Δt = 0.008 ms.
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Fig. 6. Free surface deformation for an ellipse with  ζ = 3 and v0=1 m/s 
at three consecutive time steps with Δt = 0.008 ms.

The maximum pressure at the first time step occurs 
at origin and exactly beneath the symmetry line of the body. 
However, the location of the maximum pressure moves 
toward the throat of the gap layer at the next time step and 
the keel line pressure reduces. The air pressure rapidly drops 
after the throat of the layer. As the body gets closer to the 
free surface, the free surface is more deformed. Since the free 
surface is deformed, the body will touch the free surface 
at least on two points. If one can continue the numerical 
simulation while the body touches the free surface, some 
amount of air is entrapped between the body and free surface. 
Similar simulation can be also carried out for a blunter body. 
Figure 7 illustrates the maximum pressure distribution for 
an ellipse with ζ = 7 and v0 = 1. The main difference between 
this new evaluated pressure and the previous one for ζ = 3, 
is the behavior of the air pressure. The solver predicts an 
impulsive response for the induced pressure. The maximum 
peak pressure also dramatically increases due to contribution 
of longer part of the body in comparison with the previous 
body. Although the predicted pressure corresponds with the 
air flow, its magnitude is in the same order of hydrodynamic 
impact pressure.
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Fig. 7. Pressure distribution for an ellipse with ζ = 7 and v0 = 1 m/s.

The evaluated pressure distribution for the blunter body 
shows a keel pressure three times more that the peak pressure 
of the previous body. In fact, the air layer can effectively 
tolerate a high pressure. This can significantly reduce the 
impact speed. One may further develop the present model 
to consider a rigid body dynamic equation to estimate the 
speed reduction. Theinduced high pressure compresses the air 
flow. Consequently, the governing equation should be changed 

to a compressible flow. To investigate this case, maximum air 
velocity for both bodies are evaluated and shown in Figure 8.
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Fig. 8. Maximum air velocity for (a) An ellipse with ζ = 3  
and (b) An ellipse with  ζ = 7.

For both bodies the maximum velocity occurs at the throat 
of the air gap layer. However, the behavior is completely 
different. It is clearly shown that the bluntness of the body 
can change the induced air speed. The maximum speed 
in the blunter body exceeds 0.3 and the flow is certainly 
compressible. The evaluated velocity speed shows that from 
x/L = 0.1, the Mach number is about 0.3.Additionally, the 
velocity of air flow after the throat is still considerably high. 
This can be also interpreted from the impulsive pressure 
reported in Figure 7. This suggests that another air cushioning 
layer may form after the throat but with much smaller length 
scales. 

The accuracy of all numerical methods is dependent on the 
element size. Therefore, a mesh independency analysis should 
be always carried out to assess the whole performance of the 
numerical method.  Boundary element method is also very 
sensitive to the element size especially close to the sources 
of disturbances. Figure 9 indicates mesh dependency analysis 
which typically figured out for an ellipse with ζ = 4. The error 
is defined based on the maximum pressure. Similar analysis 
is also conducted for all other cases. 
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Fig. 9. Mesh dependency analysis

The cushioning problem is a complicated problem and 
all published researches focus on the special aspects of the 
problem with different assumption and limitation. This makes 
it difficult to find a general problem which can be used as 
a bench mark for long range of applications. Unfortunately, 
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the most of study considers the cushioning problem for small 
scale impacting bodies such as droplet impacts. However, 
there are studies which may be considered for validation 
such as those carried out by Hicks and Purvis [5, 6 and 7] 
and Hicks et al. [8]. The assumptions and the geometries 
are not the same as those considered in the present model 
but their model is effectively available for large sections. The 
Hicks and Purvis method has been used and a computer 
code developed to calculate cushioning problem for large 
blunt bodies.  Figure 10 shows the comparison of the results 
of the present method with Hicks and Purvis method for 
two ellipses with ζ = 3 and ζ = 7. 
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Fig. 10. Evaluation of the present method and Hicks and Purvis method. 
(a) for a 2D ellipse with  and (b) for a 2D ellipse with ζ = 7. The Hicks 
and Purvis results are reproduced by the Authors for the corresponding 

geometries.

The comparison depicts that the tendency of the both 
methods are the same. The blunter body shows a better 
agreement between both methods. The main source 
of deviation is neglecting lubrication region in the present 
method. It can be shown that considering such a region may 
result in a higher cushioning pressure. However, Mandre and 
Brenner [9] showed that the high pressure may not happen 
in real practice where the cushioning layer collapses before 
experience very high pressure. Anyhow, motivation of this 
method is to use a simple method by disregarding lubrication 
layer effect. The method is applicable for the very blunt and 
large bodies. 

CONCLUSIONS

Numerical simulation of the air cushioning problem is 
investigated in this study. The proposed method based on 
two different governing equations for modeling the air flow 
including the incompressible and compressible flow which 
both are potential. The governing equations are in the forms 
of Laplace equation. The equation is solved using an iterative 
boundary element method. Pressure distribution and free 
surface profile are estimated for different blunt bodies. Typical 
results corresponding to two ellipses with ζ = 3 and ζ = 7 
are presented. It is shown that as the bluntness of the body 
increases the induced pressure increases and the resulting 
water surface profile rises. Comparison of the present method 
with analytical method of Hicks and Purvis shows that the 

inviscid potential method can fairly approximate the problem 
for very blunt bodies. Additionally, the behavior of the air 
pressure for the blunter body is impulsive and the magnitude 
of the peak pressure is in order of impact pressure of water 
entry. This suggests that the cushioning problem cannot be 
neglected for very blunt bodies in water entry problem. 

LIST OF SYMBOLS 

Below is the list of symbols which are employed in the 
present text.
ρa Air density
ρw Water density
σ Air-Water surface tension
P Pressure 

 Velocity potential
λ Fundamental solution of Laplace equation
η Free surface profile
κ Curvature 

 Norma vector
Hij, Gij Influence coefficients
g Gravitational acceleration
ds Length differential
Γ Boundary identity
a, b Dimensions of an ellipse
ζ Ellipse dimensional ratio

REFERENCES

1. J.H.G., Verhagen, 1967,“The impact of a flat plate on a water 
surface.”, J. Ship research 11, 211-233.

2. O. Reynolds, 1886, “On the theory of lubrication and 
its application to Mr. Beauchamp tower’s experiments, 
including an experimental determination of viscosity of 
olive oil.” Philos. Trans. R. Soc. London Ser. A 177, 157-234.

3. N.G., Asryan, 1972, “Solid plate impact on surface 
of  incompressible fluid in the presence of a gas layer 
between them.”, SSR Mek25, 32{49.

4. S.K., Wilson, 1991, “A mathematical model for the initial 
stages of fluid impact in the presence of a cushioning fluid 
layer.”, J. Engineering mathematics 25, 265-285.

5. P. Hicks and R. Purvis, 2010, “Air cushioning and bubble 
entrapment in three-dimensional droplet impacts.” J. Fluid 
Mechanics 649, 135-163.

6. P. Hicks and R. Purvis, 2011, “Air cushioning in droplet 
impacts with liquid layers and other droplets.” Physics of 
fluids 23. 

7. P.D. Hicks and R. Purvis, 2013, “Liquid solid impacts with 
compressible gas cushioning.” Journal of Fluid Mechanics 
735, 120-149.



POLISH MARITIME RESEARCH, No S1/2018 93

8. P.D. Hicks, E.V. Ermanyuk, N.V. Gavrilov, and R. Purvis, 
2012, “Air trapping at impact of a rigid sphere onto a liquid.” 
J. Fluid Mechanics 695, 310-320.

9. S. Mandre and M.P. Brenner, 2012, “The mechanism 
of  a  splash on a dry solid surface.” Journal of Fluid 
Mechanics 690, 148-172.

10. F.T. Smith, L.Li and G.X. Wu, 2003,“Air cushioning with 
a lubrication/inviscid balance.” Journal of Fluid Mechanics 
482, 291-318

11. J.O. Marston, I.U. Vakarelski, and S.T. Thoroddsen, 2011, 
“Bubble entrapment during sphere impact onto quiescent 
liquid surfaces.” J. Fluid Mechanics 680, 660-670

12. T. Tran, H. de Maleprade, C. Sun, and D. Lohse, 2013, “Air 
entrainment during impact of droplets on liquid surfaces.” 
J. Fluid Mechanics 726.

13. G.R.G. Lewison, and W.M. Maclean, 1968, “On the 
cushioning of water impact by entrapped air.” J. Ship 
research 12, 116-130

14. S.T. Thoroddsen, T.G. Etoh, K. Takehara, N. Ootsuka and 
Y. Hatsuki, 2005 “The air bubble entrapped under a drop 
impacting on a solid surface.” J. Fluid Mechanics 545, 
203-212.

15. W. Bouwhuis, M.H.W. Hendrix, M.H.W., D. van der Meer, 
and J.H. Snoeijer,  2015, “Initial surface deformations 
during impact on a liquid pool.” J. Fluid Mechanics 771, 
503-519.

16. J.T. Katsikadelis, “BOUNDARY ELEMENTS: Theory  and  
Applications”, Elsevier, 2002

CONTACT WITH THE AUTHORS

MojtabaBarjasteh

Hamid Zeraatgar
e-mail: hamidz@aut.ac.ir

Amirkabir Laboratory of Hydrodynamics (ALH)
Faculty of Maritime Engineering

Amirkabir University of Technology
Tehran
Iran


