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ABSTRACT

Radars and sensors are essential devices for an Unmanned Surface Vehicle (USV) to detect obstacles. Their precision 
has improved significantly in recent years with relatively accurate capability to locate obstacles. However, small 
detection errors in the estimation and prediction of trajectories of obstacles may cause serious problems in accuracy, 
thereby damaging the judgment of USV and affecting the effectiveness of collision avoidance. In this study, the effect 
of radar errors on the prediction accuracy of obstacle position is studied on the basis of the autoregressive prediction 
model. The cause of radar error is also analyzed. Subsequently, a bidirectional adaptive filtering algorithm based 
on polynomial fitting and particle swarm optimization is proposed to eliminate the observed errors in vertical and 
abscissa coordinates. Then, simulations of obstacle tracking and prediction are carried out, and the results show the 
validity of the algorithm. Finally, the method is used to simulate the collision avoidance of USV, and the results show 
the validity and reliability of the algorithm.
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INTRODUCTION

An Unmanned Surface Vehicle (USV) is a  ship 
that navigates on water in an autonomous manner. Its 
autonomous collision avoidance capability is the basis for 
safe navigation and undertaking maritime tasks [1]. A USV 
uses the Automatic Identification System (AIS) and radars 
to access environmental information [2]. Among them, 
radars are the basic devices for USV to obtain obstacle 
information [3]. The International Maritime Organization 
(IMO) specifies that the maximum ranging error of radar 
should be 1% of the range or 30 m and that the azimuth error 
should be within 1° [4]. However, radars present unstable 
accuracy because of the complexity of sea conditions and 
existence of clutters and exhibit unacceptable detection 
errors [5]. Given that the collision avoidance planning of 

USV is based on the accurate tracking of obstacle targets [6], 
the errors of the latter may significantly affect the result of 
the former [7].

The estimation and prediction of position, velocity, and 
information for maneuvering target are important issues in 
target tracking area and are closely relevant to information 
fusion  [8]. Boats, which may suddenly change their 
acceleration and turning, are principal obstacles that can be 
difficult to avoid for USVs. For an effective target tracking, the 
motion of target should be modeled first and then the state of 
target should be estimated by filtering [9]. However, the filter 
and motion models of target are often mismatched owing to 
the uncertainty and variability of motion modeling, thereby 
degrading the effect of estimation [10]. Therefore, filtering the 
motion data of target by using a simple algorithm, weakening 
the influence of observation error, and accurately estimating 
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the target motion are crucial tasks in maneuvering target 
tracking technology [11].

The Wiener filtering method tracks a target on the basis 
of input signals and noises, and this method has significantly 
contributed to the application and development of filter theory. 
The effect of filtering degrades when the priori information 
deviates from the hypothesis [12]. Widrow and Hoff [13] of the 
Stanford University proposed the least mean squares adaptive 
algorithm based on the Wiener filter and Kalman filter (KF) 
theory and laid the foundation of adaptive filtering theory [14]. 
Compared with the Wiener filtering, this algorithm can adjust 
the parameters of the filter by self-learning without knowing 
the prior information of input signals and noises and can thus 
obtain optimal estimation. However, the effect of adaptive 
filtering is difficult to be controlled [15]. Unlike the traditional 
Wiener filtering and KF algorithms, algorithms based on 
the least squares criterion, such as th recursive least squares 
method [16], and QR decomposition of the minimum method, 
regard the minimum squared error sum as the optimization 
target. However, the principle of the methods determines that 
they can only be applied in the estimation or approximation 
of long-term statistical properties. Singer [17] proposed 
a time-dependent model (the Singer model) that assumes 
noises as colored and considers the targeted acceleration to 
be a uniform time-dependent process, the process is subject 
to a zero-mean uniform distribution. However, the model 
causes large errors for maneuvering target, thereby leading to 
an undesirable result of estimation. The Jerk model algorithm 
that considers the order of the state vector derivative as the 
main reason that affects tracking performance, and the 
Jerk term (acceleration rate) are introduced into a system 
model to achieve an accurate estimate of acceleration [18]. 
However, when the input Jerk term is a step transition, the 
model algorithm produces some definite steady-state errors. 
The model parameters also cannot be adjusted adaptively with 
the change in the target maneuverability, thereby affecting the 
tracking accuracy of the algorithm. The interacting multiple 
model has been developed to a complete interactive multi-
model algorithm on the basis of the generalized pseudo-
Bayesian algorithm. The model has also been combined 
with cubature KF [19] or linear quadratic regulator [20]. 
To obtain an ideal effect, the model needs a wide range of 

maneuvering forms. This requirement means a substantial 
increase in computing.

The advantages and limitations of the above-mentioned 
methods are listed in Table 1.

The autoregressive model is a  convenient prediction 
algorithm that describes variables at later times with the 
linear combination of variables given in advance  [21]. 
The unfiltered information for target obtained by the 
autoregressive model results in great perturbations. To solve 
the problem, a computationally fast algorithm for filtering is 
proposed in this study in consideration of the requirements of 
timeliness in the avoidance of USV. First, the sampling points 
of target are fitted as a polynomial curve by using the least 
squares method to reduce the longitudinal errors. Thereafter, 
an improved Particle Swarm Optimization (PSO) algorithm 
is used to fit the horizontal data of sampling position on the 
basis of the modified curve. A penalty function is introduced 
in the PSO algorithm to limit the fitting range and thus 
keep all the modified points in a reasonable area. After 
the bidirectional fitting, the radar errors can be effectively 
reduced. The proposed algorithm can be used in the collision 
avoidance of USVs.

The paper is organized as follows. In Section 1, the 
autoregressive model is introduced and the problem of the 
significant effect of detection errors on the accuracy of motion 
prediction is analyzed. In Section 2, an error mitigation 
algorithm based on the bidirectional fitting method that uses 
polynomial and Particle Swarm Optimization [22] is proposed. 
In Section 3, simulations of trajectory prediction and obstacle 
avoidance are carried out, and the results are analyzed in detail 
to verify the effectiveness of the algorithm. Finally, conclusion 
is remarked in the last section. 

PROBLEM FORMULATION

We predict the moving position using the autoregressive 
model.

We assume that, at moment t, the position of obstacle is 
p(t), p = (x y)T. After the obstacle enters the detection area 
of radar, the continuous position sequence of this obstacle 
can be obtained.

Tab. 1. Schematic diagram of mass point

Methods Name Advantages Limitations

Wiener filtering method It can be used in continuous  
and discrete models

The effect of filtering degrades when the priori  
information deviates from the hypothesis

Least mean squares (LMS) 
adaptive algorithm

It can adjust the parameters of the filter by self-learning 
without knowing the prior information of input  

signals and noises
The effect of adaptive filtering is difficult  

to be controlled

Recursive least squares 
method

It can converge much faster than  
the LMS algorithm

It can only be applied in the estimation of long-term 
statistical properties

Singer model It is a global statistical model and can be used  
for filtering in various tracking methods

The model causes large errors for high maneuvering target. 
Inaccurate noise statistics can also cause low precision

Jerk model It improves the accuracy by adding the jerk dimension  
to the matrix compared with the single model

The model parameters cannot be adjusted adaptively.  
It takes more time to stabilize than the single model

Interacting multiple 
model It can efficiently adjust the probability of model It requires a large amount of computation
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Given the inertia of moving object, the current position 
of obstacle is assumed related to its former n positions; this 
relationship complies with the n-order autoregressive model 
as follows:

					       ,
    (1)

where n is the order of the autoregressive model, e(t)is the 
position prediction error, and αiis the regression coefficient. 
The type of regression coefficient depends on the degree of 
association between two directions of motion target. A scalar 
αi enables synchronous alteration between the x and y velocity. 
A diagonal matrix αi enables independent alteration between 
the x and y velocity. If αi is a two-dimensional matrix, then 
the x and y velocity are partial interactional.

Considering the motion characteristics of objects at sea, we 
assume that the acceleration of obstacle changes slowly. This 
condition can be described using the first-order autoregressive 
model as follows:

a(t) = βia(t – i) + w(t),                (2)

where βi denotes the regression coefficient and w(t) denotes the 
acceleration prediction error. From the relationship between 
acceleration and position, we obtain 

a(t) = p(t) – 2p(t – 1) + p(t – 2),          (3)

where a(t) is the acceleration at time t. From Equations 
(2) and (3), the obstacle position at moment t + 1 can be 
expressed as

p(t + 1) = (2 + βt )p(t) – (2βt + 1) p(t – 1)+

βt p(t–2) + w(t),                (4)

During the obstacle avoidance planning of USV, the 
predictions of target movements in multiple cycles are needed. 
The obstacle position of step k at moment t is obtained using 
the mathematical induction method as follows:

        (5)

where v(t) is the velocity at time t and v(t) = p(t) – p(t–1). To fit 
the first-order autoregressive model of acceleration by using 
the least squares method, we assume

      (6)
where the function min(x) is the minimum of x; N is the 
number of the foregone motion data, which are used to 
predict the dynamic positions of obstacle. When the value 

of N is large, a large amount of historical data are needed 
and the effect of pre-movements on the predicted position 
is significant; this condition is suitable for predicting slow 
moving objects. When the value of N is small, a small amount 
of the historical data are needed and the future positions of 
the obstacle depends mainly on the recent movements of 
the object; this condition is less constrained by the previous 
movement and suitable for predicting fast moving objects.

We can find from Equation (5) that, at time t, the predicted 
difference in positions between two consecutive periods k 
and k + 1 is

    (7)

Equation (7) shows that the difference is closely related to 
the prediction step k and the acceleration. When the value of 
k is large, the difference is significant because of the coefficient 
before a(t). The acceleration of ships at sea often presents 
a slight change. However, the changes may be significantly 
magnified with data errors, thereby leading to a remarkable 
increase in the difference and thus large errors in the multi-
step prediction.

A simulation for analyzing the above-mentioned problem 
is shown in Fig. 1. In the simulation, the obstacle presents 
an error within the standard range of radar error. The 
prediction positions are obtained using Equations (5)–(6). 
The parameters are set as N = 6 and k [1, 2, 3, 4]. In particular, 
no prediction positions are applied at the first six times. 
Thereafter, six foregone observation positions are needed 
for prediction, and the first to fourth future positions are 
forecasted at each moment. The obstacle moves from the left 
corner. Even in the case of small disturbance of the observed 
data, the prediction results do not maintain motion inertia 
but show a great fluctuation. Specifically, when the value of k 
is large, the difference between the predicted position and the 
actual position is significant. The effect is highly pronounced 
when the trajectory changes in a large degree.

We conclude from the theoretical derivation and 
simulation results above that, if the observation error of 
obstacle is ineffectively reduced, then the accuracy of motion 
prediction cannot be guaranteed and thus the collision 
avoidance planning of USV may fail. Therefore, the observed 

Fig. 1. Obstacle trajectory prediction with observation error
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data should be modified to reduce the acceleration change 
caused by radar errors and obtain a smooth trajectory that 
is close to the actual one.

ERROR MITIGATION METHOD BASED  
ON POLYNOMIAL AND PSO

Considering the radar observation error, the obstacle 
observation position is randomly distributed within the 
circle with r_error = 30, as specified by IMO. We select N 
sampling coordinates from the obstacle observation data at 
moment t by a sampling period of Tp(k). The value of Tp(k) 
is given as follows:

    (8)

where Rw is the radius of the radar observation scope and T is 
the observation period of the radar. vk is the relative velocity 
set of various periods between the USV and the kth obstacle. 
In particular, vk= {vk,1, vk, 1, ... vk,n}. The mathematical symbol 

 indicates that the real x is rounded down. Equation 
(8) shows that Tp(k) is a positive integer multiple of T, and 
the value of Tp differs with different obstacles. When the 
radar scanning cycle is short and the relative speed of 
USV and obstacle is relatively small, the radar observation 
errors may misalign the observation positions of obstacles 
in several near scanning cycles T. As a result, the motion 
of obstacles can be difficult to detect and the errors can 
be difficult to distinguish and eliminate. Ultimately, the 
trajectory prediction of obstacles becomes difficult. Thus, the 
prediction period Tp(k) is adopted for reasonably increasing 
the data sampling period and improving the accuracy of 
error elimination.

Given that the polynomial fitting is unidirectional, a local 
coordinate system xʹOyʹ  is established with N sampling points. 
The error mitigation is performed in the local coordinate 
system, and the coordinate conversion is expressed as 

    (9)

where α is the rotation angle between the local coordinate 
system and global coordinate system.

1. � Error mitigation in vertical coordinates with polynomial 
fitting method.

    � We fit the sampling points (xʹ, yʹi) with the polynomial as 
follows:

pn(x iʹ ) = a0 + a1 x iʹ + a2 x iʹ
2 + … + ak x iʹ

k  (10)

    � where pn 0 is the function of the polynomial fitting curve; 
a0, a1, a2, and a1 are the coefficients of the function. The 
least squares method is used in the fitting.

    � The value of the polynomial coefficients can be obtained 
by solving the extreme of I in the following equation:

  (11)

    � The points on the curve are fitted using the polynomial 
method by changing their ordinate values, and the 
corresponding abscissa values remain unchanged. Thus, 
the sampling error on y axis only is decreased.

2. � Error mitigation in abscissa coordinates with PSO 
    � Sampling data are selected on the fitting curve by using 

the sampling period of. The early movement of obstacle 
slightly affects the position prediction. Thus, we set N=4 
and the sampling positions

Pnʹʹ = {pʹʹ(t–3Tp ), pʹʹ(t–2Tp ), pʹʹ(t–Tp ), pʹʹ(t )},

    � At moment t, we regard the ordinate values of  
pʹʹ(t–2Tp ) and pʹʹ(t–Tp ) as a  two-dimensional 
particle (xʹt-Tp

, xʹt-2Tp
) and the corresponding y values  

(yʹt-Tp
, yʹt-2Tp

) are obtained using the polynomial fitting 
curve function yʹʹ= pn(xʹt). The distance between 
the calculated point (xʹt-Tp

, yʹʹt-2Tp
) and the observed 

position of pʹ(t–2Tp ) is denoted as dt–1 , and the  
distance between the calculated point (xʹt-2Tp

, yʹʹt-2Tp
)  

and the observed position of pʹ(t–Tp ) is denoted  
as dt–2. 

    � The fitness function in the PSO model to solve the optimal 
particle (xʹt-Tp

, yʹʹt-2Tp
) is as follows:

    (12)

    � where fit() means the function of optimization goal and  
Δa(t) is the acceleration jerk at time t.

H = {ht–1, ht–2},              (13)

    � where 

      (14)

    � In Equation (14), i = t – 1, t – 2.
    � Moreover, H is a penalty function and reflects the effect 

of dt–1 and dt–2.
From Equations (12)–(14), we can find that the fitness 

function aims to obtain a minimal amount of change in 
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acceleration Δa(t) after the correction of the middle two 
sampling positions. When the fitting point is within the 
range of the observation error, the penalty function is set 
as 0; otherwise, a penalty function that is associated with 
the above-mentioned differences can be added to the 
fitness function. Fig. 2 shows that, after the best particle  
(xʹt-Tp

, xʹt-2Tp
) is obtained, the optimal p(t–2Tp ) and p(t–Tp ) are 

obtained from the polynomial fitting curve function. 

The bidirectioal fitting method shows that, after the 
error mitigation on both axes, all of the modified trajectory 
points are within the radar accuracy error range with a high 
possibility and are within the curve by polynomial fitting. 
As a result, the change in acceleration is decreased and the 
prediction accuracy of obstacle position is high. 

SIMULATION

We perform two simulations for predicting the trajectory of 
obstacle during its slow or fast change in movement by using 
the proposed method. In each simulation, the prediction is 
processed in two continuous periods. A new observed point 
appears in the second period. The calculation parameters 
are set as N=4 and k=5. The symbol meanings are presented 
in Fig. 3(a).

Figs. 3 and 4 show that, regardless of the slow or fast change 
in movement of obstacle, both trajectories predicted on the 
basis of the optimized sampling points maintain motion 
inertia. The results clearly indicate the moving trend of the 
obstacle and show the effectiveness of the method in error 
mitigation.

Fig. 3. Trajectory prediction during slow change in movement of obstacle

Fig. 4. Trajectory prediction during fast change in movement of obstacle

Fig. 2. Error mitigation in x axis with PSO

(a) Period 1 

(a) Period 1 

(b) Period 2 

(b) Period 2 

1) Simulation for minor motion change situation

2) Simulation for major motion change situation
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The prediction is conducted in advance. The errors in 
prediction are magnified, and the inertia reflected in two 
periods presents a certain gap. The reason is that the new 
observed point in the second period provides information 
that is unavailable in the first period. 

3) Simulation of collision avoidance
To test the effect of error mitigation on the avoidance of 

obstacle, we simulate the collision avoidance of a USV with 
the Velocity Obstacle (VO) method under MATLAB [23]. In 
the method, a velocity model between the USV and obstacles 
is established by the spatial relationship of the position and 
velocity. The VO method is a collision avoidance algorithm 
that relies sufficiently on the accuracy of obstacle position 
and velocity. 

In this simulation, the initial position of the USV is (0, 0). 
The initial position of three obstacles are (1500, −500), (2000, 
500), and (6000, −500). The target point is set at (6500, −800). 
The unit is meter. The obstacles change their speeds and 
courses randomly. Fig. 5 illustrates the initial headings of four 
boats. The circles around obstacles indicate the ship domains 
(the radius of the domain is set to 230 in the simulations), 
which are used to represent the area of an obstacle that should 
be avoided.

As shown in Figs. 5 and 6, the observed trajectories of 
obstacles fluctuate throughout the entire process of collision 
avoidance, thereby increasing the difficulties in avoidance.

The short red line at the bottom of Fig. 6 shows that, when 
the USV reaches the abscissa value during the simulation 
owing to inefficient avoidance, the USV enters into the 
domain of the obstacle, which is a dangerous situation.

Table 2 shows that no USV enters into the domains of 
obstacles when the error mitigation method is adopted. 
By contrast, this situation occurs 11 times when the error 
mitigation method is not applied, thereby indicating that 
the avoidance effect is poor.

By comparing the trajectories of the USVs in the two 
simulations, a frequent fluctuation is observed in the direction 
and speed of the USV without using the error mitigation 
method. This finding is due to the unbalanced movement of 
the obstacles and the existence of observation errors, which 
may seriously affect the collision avoidance. As shown in 
Fig. 5, the path of the USV is smooth, because its collision 
avoidance is based on the modified trajectory of obstacle 
after error mitigation.

Table 2 also shows the advantage of the error mitigation 
method in improving collision avoidance efficiency. When 
using the error mitigation method, the USV takes only 59 
cycles to avoid obstacles and reach the goal. On the contrary, 
the USV without using the error mitigation method requires 
85 cycles to complete the same task.

Fig. 7 shows the real-time 3D simulation of collision 
avoidance with the error mitigation method. In the figure, the 
obstacle detected is the real position of the obstacle, the gray 
circle indicates the obstacle domain observed by the radar, 
and the corresponding colored circle is the obstacle domain 
after correction. A large deviation exists between the observed 
and real positions of the obstacle as a result of the existence 
of radar errors. This deviation may affect the efficiency of 
collision avoidance of the USV. After adopting the correction 
algorithm, the domain of the obstacle corresponds to its real 
position, indicating that the observation errors are effectively 
eliminated. This simulation can provide a clear insight into 
the avoidance process of USVs in a real-world environment. 
The finding indicates the accuracy of the proposed method 
in predicting obstacle motion.

The trajectory prediction and obstacle avoidance 
simulations indicate that the bidirectional fitting method 

Fig. 5. Simulation of the collision avoidance for unknown 
dynamic obstacles with error mitigation method

Fig. 7. 3D simulation of the collision avoidance of USV

Fig. 6. Simulation of the collision avoidance for unknown 
dynamic obstacles without error mitigation method

Tab. 2. Correlation data of simulation with and without the error 
mitigation method

With the error 
mitigation method

Without the error 
mitigation method

Times that the USV 
enters the domains  

of obstacles
0 11

Time required  
to obtain the goal 
(Unit: period T)

59 85
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substantially eliminates the observation errors of radar and 
shows the validity and reliability of the proposed method in 
obstacle avoidance planning. 

CONCLUSION

First, we analyze the motion prediction error caused by 
observation accuracy by using the autoregressive prediction 
model. Then, an error mitigation algorithm based on 
polynomial fitting and PSO is proposed to effectively improve 
the prediction precision. The polynomial method is used to 
fit the observed path points for eliminating the longitudinal 
error, and the PSO algorithm is used to correct the fitting 
points for eliminating the horizontal error of the observed 
data. The effectiveness of the bidirectional fitting algorithm 
in error mitigation is verified by trajectory prediction 
simulations. Moreover, a simulation on collision avoidance 
is carried out using the proposed method combined with the 
VO method. The results show the validity and reliability of 
the algorithm in collision avoidance. 
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