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ABSTRACT

The article discusses the issue of designing a dynamic ship positioning system making use of the adaptive vectorial 
backstepping method and RBF type artificial neural networks. In the article, the backstepping controller is used to 
determine control laws and neural network weight adaptation laws. The artificial neural network is  applied at each 
time instant to approximate nonlinear functions containing parametric uncertainties. The proposed control system does 
not require precise knowledge of the model of ship dynamics and external disturbances, it also eliminates the problem 
of analytical determination of the regression matrix when designing the control law with the aid of  the adaptive 
backstepping procedure.
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INTRODUCTION

Issues related with automatic control of ship motion at sea 
still remain the area of active research, due to new and more 
complicated operational tasks to be undertaken by ships. 
Ship control is usually executed using a multi-layer control 
structure. The highest layer in this structure is the supervisory 
control system, which is responsible for planning the desired 
ship trajectory [10] from the initial point to the set destination 
point, based on the data achieved from navigation devices 
[13]. Here, algorithms are proposed in the literature which 
make use of the game theory [12], or artificial intelligence 
methods, including evolutionary algorithms [19,20] or fuzzy 
neural systems [15].

The next control layers are composed of algorithms 
responsible for ship’s motion along the set trajectory, 
manoeuvring, and keeping the set heading and speed 
parameters, or position and heading parameters. These 
tasks are executed depending on the speed of the moving 
ship. Currently, a large number of watercrafts are equipped 
with dynamic positioning (DP) systems [17]. The list of those 
watercrafts includes drilling platforms, floating cranes, cable 
ships, store ships, fire boats, research and passenger ships, 
underwater work assistance ships used, for instance, for laying 
underwater pipelines, warships, reloading terminals, etc. 
The basic task of the DP systems is maintaining the set ship 
position and heading, or assistance in ship manoeuvring 
at low speed (up to 2 m/s), in the presence of environmental 
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disturbances acting on the ship hull. This task is executed 
by controlling ship’s movements in three degrees of freedom 
(DOF’s): surge, sway, and yaw, with the aid of propellers and 
rudders. An overview of essential research and technological 
development in designing DP controllers is presented in [17]. 

The majority of the presently used DP control methods is 
based on equations describing the mathematical model of 
dynamics and kinematics of the object. When maintaining 
the set position and heading of the DP ship, nonlinear 
damping forces, Coriolis forces, and centripetal forces can be 
neglected due to their small effect on ship dynamics, and the 
nonlinearity can be only taken into account in the kinematic 
model. On the other hand, tracking the set trajectory at low 
ship speed consists in simultaneous control of ship heading 
and its longitudinal and transverse position. Changes of the 
operating point of the system and hydrodynamic phenomena 
are the sources of nonlinearities and varying coefficients in 
equations of ship dynamics and kinematics. Controlling 
nonlinear systems with uncertainties is the area which still 
needs further research. At present, two basic approaches, 
referred to as robust and adaptive control, are applied to 
deal with system uncertainties. Robust control methods, 
such as sliding mode control [21] or H∞ control [8], consist 
in designing a controller with fixed structure which ensures 
proper performance in the entire range of process changes. 
Adaptive control methods, in turn, such as backstepping 
and its modifications: Dynamic Surface Control (DSC) [18], 
and Active Direct Surface Control (ADSC) [14] provide 
opportunities for designing a dynamically changing feedback 
loop. 

The basic idea of designing an adaptive control law consists 
firstly in assessing the value of the unknown parameter and 
determining its estimate. Then, the static part of the controller, 
which contains the estimated parameters, is continuously 
updated to reflect changing conditions of system operation. 

Currently, backstepping is one of basic methods used 
to design nonlinear control systems with uncertainties. It 
belongs to the group of recursive methods based on the theory 
of Lyapunov functions [9]. The structure of both the control 
law with feedback, and the accompanying Lyapunov function 
for systems with unknown parameters is systematised. 

A complex system is firstly divided into lower-dimension 
subsystems. Then, the Lyapunov function and the intermediate 
virtual control inputs are determined for each subsystem. 
Designing is done recursively until the entire system reaches 
the real control input. This way the goal of control can be 
achieved at reduced control effort [22]

The basic limitation in the use of the adaptive backstepping 
method is the need for analytical calculation of the time 
derivative of the “virtual control signal” [9] at each procedure 
step, which leads to a complicated algorithm requiring much 
computational effort. What is more, the level of complicity 
of controller’s structure increases with the increase of 
the system order. To eliminate the need for calculating 
complex derivatives, first- and second-order filters are 
frequently used [24]. The other limitation of the standard 
adaptive backstepping method is the assumption that the 

functions with uncertainties are to be linear with respect 
to unknown parameters and, consequently, are able to be 
presented in the form of the regression model. Determining 
the regression matrix requires laborious analysis. Moreover, 
the complexity of the regression matrix and the number of 
unknown parameters increase in consecutive backstepping 
procedure steps, thus generating the so-called effect of 
overparametrization [9]. 

Some attempts to solve this problem which can be found 
in the literature make use of fuzzy systems or artificial neural 
networks [1, 6]. The latter approach can be applied at each step 
of the backstepping procedure. Neural networks are used for 
assessing nonlinear functions, the form of which depends on 
the values of the estimated parameters. This method makes 
it possible to design the control law in which the analytical 
form of the regression matrix and the assumption of linearity 
with respect to parameters are not required. 

This paper presents a multidimensional nonlinear DP 
controller designed using the adaptive vectorial backstepping 
method and Radial Basic Function (RBF) type artificial neural 
networks in the feedback loop. When designing the control 
law, the presence of parametric uncertainties was assumed in 
the matrices of damping, Coriolis forces, and environmental 
disturbances. The artificial RBF type neural network was used 
at each time instant to approximate nonlinear functions with 
parametric uncertainties. The network weight adaptation 
laws were determined based on the Lyapunov’s theory of 
stability, depending on the operating point of the system. 
This way, the neural network does not require preliminary 
offline weight tuning.

The applied radial network is the structure consisting 
of three layers: input, hidden, and output. The architecture 
of the network is relatively simple. The input signals are given 
to the input layer, while the radial neurons are accumulated 
in the hidden layer. The neurons play a special role, as they 
map radially the space surrounding the set points. The output 
layer usually comprises only one neuron, the role of which 
is to combine the weighted signals coming from the hidden 
layer. This approach makes it possible to map the entire space 
of points. 

Unlike the already existing DP systems, the proposed 
control system does not require detailed knowledge of the 
model of object’s dynamics and external disturbances, 
thus eliminating the problem of analytical calculation of 
derivatives and the regression matrix. 

The use of the theory of Lyapunov functions and RBF 
networks makes that the designed feedback loops ensure the 
convergence of ship position and heading to the set values, 
and the boundedness of signals in the closed control system 
loop [11].

STRUCTURE OF CONTROL SYSTEM 

A structurally simplified general working scheme of the DP 
system is shown in Fig. 1. The set values of ship position and 
heading, composing the ship position vector, are introduced 
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to the system via user’s interface, while the estimated vectors 
of current ship position and speed are calculated based on 
the navigation reference system and the state observer. The 
position error vector, being the difference between the set 
vector and the estimated vector, is passed to the DP controller, 
which then calculates forces and torque required to minimise 
deviations from the set values. 

Fig. 1. Structure of DP control system with backstepping controller 
and RBF type neural network

The resultant vector of forces and torque is passed to the 
allocation control system, where the set values of forces and 
torque are converted to control signals for actuator settings, 
at the same time minimising the energy needed to execute the 
control task. The actuator settings refer to rotational speeds 
of main propellers and azimuth and tunnel thrusters, and 
rudder angles.

Bearing in mind the required precision and safety of 
control executed by a DP system, the number of actuators 
is, as a rule, larger than the number of the controlled degrees 
of freedom of ship motion. This over-actuation is the reason 
why the conversion of forces and torque to control signals 
and their allocation into individual actuators is not always 
unambiguous. In those cases, it can be approximated in 
the square optimisation process with limitations placed on 
maximal amplitude and rate of changes of actuator settings, 
at simultaneous minimisation of economic losses resulting 
from excessive activity of propellers and rudders. 

PROBLEM FORMULATION 

This research aimed at designing a controller which would 
perform basic tasks of dynamic ship positioning: manoeuvres 
of ship position and heading change or ship stabilisation at 
a point, in the case of inaccurate data on the mathematical 
model of the object used for designing the control law. 
This means that the designed control system meets the 
condition of control error convergence to zero after change 

of the operating point of the system and/or environmental 
conditions. 

The DP controller was synthesised using the adaptive 
vectorial backstepping method and artificial RBF type 
neural networks. The artificial neural networks were applied 
to approximate nonlinear functions with uncertainties, 
while the backstepping method was used to determine the 

control laws and the RBD 
network weight adaptation 
mechanism.

MATHEMATICAL 
MODEL OF DP SHIP 

When designing the 
control law based on the 
backstepping method 
and neural networks, the 
mathematical model of a ship 
dynamically positioned in 
the horizontal plane was 
adopted. This model is given 
by the following system of 
differential equations (1)-(2). 

  (1)

 (2)

where τ = [τx, τy, τz]
T is the generalised vector of forces and torque 

acting on the ship, η=[x, y, ψ]T is the vector of ship position 
and heading, and v=[u,v,r]T is the vector of longitudinal, 
lateral and angular ship velocity components. The matrices 
M∈R3x3, D∈R3x3, C∈R3x3, and J(η)∈R3x3 represent, respectively, 
the matrices of inertia, damping, and Coriolis forces, and 
the state dependent matrix which converts coordinates from 
the system fixed to the ship’s centre of gravity to the Earth 
fixed system. The vector b=[b1, b2, b3]

T represents unmodelled 
slowly varying environmental disturbances. 

The ship model takes into account three degrees of freedom 
of ship motion: longitudinal motion (surge), transverse 
motion (sway), and change of ship heading angle. 

The model equations have the following properties [7]:

  , (3)

, , (4)
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, where  ,   (5)

, . (6)

The system (1)-(2) has a cascaded structure. The control 
input given to the system is the vector τ, while the “virtual 
control output” is the vector v, being simultaneously the 
“virtual control input” for the first subsystem (1). The control 
output from the entire system is the ship position and heading 
vector η. 

When designing the control law, it was assumed that the 
model of ship dynamics contains parametric uncertainties 
in matrices D, C, and M, and that the components of the 
vector b are unknown but slowly varying. Moreover, it was 
assumed that all state variables are bounded and measurable 
(or estimable). The set position and heading trajectories 
ηd =[xd, yd, ψd]T and their first- and second-order derivatives 
are smooth and bounded in time. 

STRUCTURE OF RBF TYPE NETWORK

A special variation in the family of artificial neural 
networks (NN) is the group of networks with radial basic 
functions (RBF). The hidden layer in this network consists 
of neurons bearing the name of basic or radial neurons [2]. 
A radial neuron represents a hypersphere in which circular 
division around the central point xi, where i = 1...l [4,16], takes 
place. The vector of radial functions φ(x) = [φ1(x), φ2(x), ... , φl(x)] 
is determined in the space of input signals. It is assumed that 
there exists the vector θTφ(x), which represents the border 
between two classes, and its value indicates belonginess to 
a given class, as θTφ(x) < 0 or θTφ(x) > 0. That means that the 
space division is nonlinearly φ –separable. 

In [4], the authors have proved that each set of patterns 
randomly distributed in the multidimensional space is φ – 
separable with probability equal to 1 if only a sufficiently large 
dimension l of the projection space is assumed. 

It is stressed in the literature that assuming a sufficiently 
large number l of radial neurons in the hidden layer ensures 
correct solution when using three network layers: the input 
layer, the hidden layer in which the vector φ(x) is executed, 
and the output layer consisting of one linear neuron described 
by the weight vector θ. The operation of the network can be 
described by formula (7)

. (7)

Selecting the type of norm can be arbitrary. In the proposed 
approach, the Euclidean norm was used together with Green’s 
functions of Gauss type [2,3,16] (8).

. (8)

Here, xi is the vector of mean values (centres) and σi
2 is 

the variance. When creating the radial neural network to the 
presented problem, the number K of basic functions had to 
be assumed. The initial values of the centres xi of the radial 
functions were selected using the Fuzzy C-Means (FCM) 
algorithm, which is used and described in the literature [5]. 

A simplified scheme of RBF network structure is shown 
in Fig 2.

 
Fig. 2 . Simplified scheme of RBF network structure 

The approximation task consists in selecting appropriate 
Green’s functions G(x, xi) and weights θi. The nonlinear radial 
function for each hidden neuron has different parameters xi  
and σi. The argument of the radial function is the distance 
of the given sample x from the centre xi.

DP CONTROLLER 

In accordance with the backstepping methodology, for the 
system (1)-(2), new state variables were defined in the form of 
control errors z1(t)R3x1 and z2(t)R3x1, and the vector αR3x1 
of functions stabilising the first subsystem. In the coordinate 
system fixed to the moving ship, the control errors take the 
following form:

, (9)

 (10)

The vector of stabilising functions will be determined 
when designing the control law. 

Based on the kinematics and dynamics equations (1)-(2) 
and taking into account the model property (5), the control 
error derivatives were determined as: 

  (11)

  (12)
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Denoting the matrix dependent on state variables by 
X = [η, v, ηd, vd], the function fR3x1 takes the form: 

 (13)

This function contains unknown model parameters. 
To determine the adaptation laws for parameters of 

matrices M, D, C and vector b, the function f is to be presented 
in the form of the regression model, after which the standard 
backstepping procedure can be applied. This approach is 
labour-intensive, requires huge computational effort, and 
leads to an excessively large number of estimated parameters, 
as stated in [23]. Instead, the components of the function 
f = [f1, f2, f3]

T can be approximated using three artificial RBF 
type neural networks NNi with the number of neurons l > 1. 
The outputs ^f = [ ^f1, 

^f2, 
^f3 ]

T from these networks have the form 
of the following regression model:

 (14)

In Equation (14), Xi is the input vector to network NNi, 
Xi=[η(i), v(i), ηd(i) vd(i)]TR4x1, while θi is the determined vector 
of weights between the second and third layer in network NNi, 
θi=[θi1, θi2, ... , θil]

TRlx1. The vector φi represents the set of 
basic function values in network NNi, φi=[φi1, φi2, ... , φil]

TRlx1.
Each RBF network has a predefined number l of radial 

neurons. The selection of their weights is made in the 
process of control system adaptation to changing operating 
conditions. In the proposed system, the number of radial 
neurons was determined experimentally as equal to l = 4.

After complementing with the RBF network equations, 
Equation (6) of control error dynamics takes the form:

 (15)

The regression vector, i.e. the vector of RBF network 
weights, is defined as θ[θT

1, θ
T
2, θ

T
3]

TR3lx1, while the regressin 
matrix φTR3x3l has the form: 

 . (16)

The task of the backstepping controller is to determine: 
the indirect control law α which stabilises the first subsystem 
(1), the control law τ which stabilises the entire system, and 
the adaptation law for the weight vector θ with respect to the 
Lyapunov function of the system. 

Applying the certain equivalence principle [9], the vector θ 
in Equation (15) was replaced by the sum of the vectors 
of estimates and estimation errors,   +  . 

 (17)

The control law was determined with respect to the 
Lyapunov function Va being the sum of squares of control 
errors and the term related with the error of estimation of the 
unknown weight vector θ.

 (18)

where: Γ > 0 is the diagonal matrix of controller gains, 
dimΓ = 3l x 3l.

Assuming that the estimated parameters are slowly 
varying, i.e. the equation   is fulfilled, the derivative 
of the Lyapunov function Va (18) takes the form:

 (19)

Substituting the error dynamics equations (11) and (17) into 
equation (19) and eliminating the term  (t)Sz1(t)=0 (6) gives: 

 
 

 
(20)

The control laws α, τ were selected such that the Lyapunov 
function (20) in the system of new variables was negative 
semidefinite: 

 (21)

Here, Kj  R3x3, j = {1,2} is the diagonal and positive definite 
matrix of controller gains. Comparing (20) and (21), the 
following relationships can be determined:

•	 weight adaptation mechanism:

 (22)

•	 vector of stabilising functions, α, independent of the 
vector of estimates  :

 (23)

•	 vector of controls, τ, dependent of the vector of estimates 
  (RBF network weights) calculated in accordance 

with (19), under the assumption that the network has 
a sufficient number of neurons, 
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 (24)

If rapidly varying disturbances do not occur in the system, 
then the control law (24) together with the adaptation law 
(22) ensure asymptotical convergence of ship position and 
heading to their set values, η(t) →ηd(t), when v(t)≈ 0. They 
also ensure the boundedness of changes of signals η(t) and 
v(t), t→∞, at bounded changes of estimated parameter values.

SIMULATION TESTS 

The computer simulations were performed on the control 
system with the structure shown in Fig.1. In these simulations, 
the issues of power overload and state observer control were 
not analysed, assuming that all state variables are bounded 
and measurable (estimable). 

The simulation tests were performed using the 
mathematical model of a store ship with length of L=76.2 m 
and mass of 4591 [t]. The ship motion equation was analysed 
by controlling the ship motion in 3 degrees of freedom with 
the aid of two main propellers with rudders, bow tunnel 
thruster, and rotating azimuth bow thruster. 

The following dimensionless parameters of the model (1)-
(2), determined in the Bis scaling system, were assumed [7]:

 
 

 

During manoeuvring operations, the set ship position 
and heading trajectories    and their derivatives    were 
generated in accordance with the reference model (25) 
to determine smooth and bounded set signals for the DP 
controller. Assuming that 

. 
= 0.8 and . = 0.05 rad/s, the 

value of Gf(s) was calculated from formula (22):

. (25)

The DP controller was defined by the control law (24), 
the neural network with radial basic functions (7), and the 
weight adaptation law (22). In the simulations, the initial 
ship position and heading, and the initial estimated weight 
values were assumed equal to zero. 

The nonlinear function of the backstepping controller was 
approximated using the RBF network, due to its properties 
described in Section 5 and the possibility to present the output 
in the form of regression model (7). 

The proposed system was designed and constructed in 
MatLab environment. Three RBF networks were created. 
For each network, 4 sets of input signals were given, and 
each time one output signal was obtained as a result of 
its operation. The number of basic neurons was chosen 
experimentally. The centres of basic functions were set using 
the FCM algorithm. The RBF network structure underwent 
preliminary verification by using it as an ordinary function 
approximator (13). After selecting its parameters, the network 
was implemented in the control structure with adaptive 
controller, shown in Fig. 1.

The tests with adaptive controller included programmable 
inertial changes od set position and heading values in the 
presence of slowly varying environmental disturbances, 
modelled using the Markov process [7]. 
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Fig. 3. Set (--) and real (-) trajectory (x, y) of DP ship

Fig. 3 shows the set and real trajectory of the ship. At time 
zero, the ship is at point A. Then it begins the manoeuvre 
of position and heading change to the set position B. After 
time t1= 1115.4s, the next change of the set ship position 
and heading takes place (towards point C). The robustness 
of the controller with radial neural network was analysed 
by introducing a disturbance signal after time t2= 836.55s. 
This signal was added to the forces acting on the ship in yaw 
direction. Based on the results of the performed simulations 
and the obtained time-histories, it can be concluded that the 
ship’s position and heading track the set trajectory with good 
accuracy (Fig. 4). 
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Fig. 4. Set (--) and real (-) time-histories of ship position and heading
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The control errors tend asymptotically to zero, without 
over-regulation in three degrees of freedom of ship motion. 
This result has been obtained for the system without a priori 
knowledge of ship model parameters and slowly varying 
environmental disturbances. The normalised control inputs 
are shown in Figure 5. 
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Fig. 5. Control inputs normalised in Bis system

These values become saturated after exceeding 1 and 
compensate the effect of environmental disturbances. As 
shown in Fig. 4, small tracking errors were recorded, but 
they did not exceed acceptable limits. 

The present study did not aim at analysing properties of the 
neural network. Better performance of the DP system can 
be achieved by further tuning the updating gains and/or by 
increasing the number of neurons. The present study only 
demonstrates the possibility of using neural networks for 
approximating the dynamics of a DP ship with the aid of the 
theory of Lyapunov functions when designing the control 
law and when estimating online the RBF network weights. 

In a general case, the backstepping method ensures that 
the values of estimates change in a limited manner and are 
approximately constant in steady-state conditions (Fig. 6).
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Fig. 6. Norm of RBF network weight vector (  i – weight vector for NNi 
network, i=1..3 in Bis system)

The obtained results confirm correct operation of the 
DB system with model and disturbance uncertainties 
at the analysed operating points.

CONCLUSIONS 

The control system with adaptive backstepping controller 
was designed for a DP ship. In this system, the RBF neutral 
network was used to estimate the nonlinear function of 
ship model. The performance of the system was checked 
in simulation tests. The proposed system does not require 
a priori knowledge of parameters of matrices of ship damping, 
Coriolis forces, and/or inertia. It neither requires precise 
modelling of slowly varying environmental disturbances. 
The use of the RBF network significantly simplifies designing 
a backstepping controller, as it does not require analytical 
description of the regression matrix. Determining the 
weight adaptation law makes preliminary network tuning 
unnecessary, as a consequence of which the network can be 
used online. The performed simulation tests have proved that 
the adaptive controller tracks the set position and heading 
trajectory with acceptably small error, at the same time 
ensuring the boundedness of signals in the closed loop of the 
control system. Thus, the results of computer simulations 
illustrate high operating effectiveness of the proposed control 
method making use of RBF neural networks. 
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