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ABSTRACT

In the paper, the concept of non-local line method is presented and used for determining the effective length for notched 
elements. Experimental tests and calculations were performed for 40 HM-T (42CrMo4+QT) steel made specimens of two 
types, i.e. smooth specimens, and notched specimens with notch radius equal to 0.2 mm, 0.5 mm, 0.8 mm, and 1 mm. 
The performed FEM calculations took into account the multi-linear hardening model and cyclic material properties. 
The concept of the presented non-local line method bases on finding the position of critical plane and determining the 
effective length,  meant as the fracture process zone. During numerical stress gradient simulations, also the weight 
function was implemented. It was observed that the effective length increases as the load increases.
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INTRODUCTION

The fatigue phenomenon is very complex, and fatigue 
damage depends on many factors, such as the type and 
condition of the material, the geometry of the element, the type 
of load, and the state of stress [3, 9, 15, 21, 24]. Determining 
the fatigue life of notched elements is still a goal for many 
scientists [13, 16, 17]. Fatigue life calculation methods can be 
divided into local and non-local. In the local methods, only the 
effort at one point is considered, while the non-local methods, 
in contrast, take into account stress or strain gradients, and/or 
strain energy density. The fatigue life of notched elements can 
also be calculated using the Neuber fictitious radius method 
[14, 18, 20, 23], which can be perceived as a substitute of the 
non-local line method. In another work which deals with this 
method [11], the relation between the microstructural support 
length and the number of cycles of nominal stress is presented. 
The relation between the fracture process zone and the loading 
level is also presented in the papers  which make use of the 

non-local volume method [9, 18]. In those two papers, the 
variability of the fracture process zone is indicated for both 
the line method and the volume method. The known non-
local methods assume that the effective length can depend 
on the notch radius [12, 16], the grain size [19], the plastic 
zone [22, 25], and the stress distribution [16]. The two first 
methods give good results only for brittle materials, while 
in the  third method, also usually used for brittle materials, 
the critical plastic crack zone can be determined using the 
equation proposed by [7] 

                                           (1)

where: 
μ – parameter which depends on loading condition, 
KIC – fracture toughness,
σY– yield stress.
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Equation (1) can be converted and the critical distance d0 
can be calculated from the equation 

                                    

(2)

where:
ξ – parameter determined based on  author’s research.

The main aspect of that approach was to determine the 
parameter ξ, because  different values are proposed by 
different authors. The value of this parameter was determined 
based on experimental tests and simulations done for different 
materials, and it mainly depended on notch geometry. 

Another way to determine the fracture process zone has 
been developed by [16]. This is a non-local volume method, 
nevertheless the effective distance concept can be meant as a 
part of the line methods. In that approach the authors made 
use of the effective distance to determine the fracture process 
zone, and then performed the calculations in this area. The 
effective distance was determined based on the  relative stress 
gradient idea (Fig. 1).

Fig. 1. Stress distribution and relative stress gradient [1]

The authors noticed that in the elasto-plastic calculation, 
the highest value of stress occurs at a certain distance behind 
the notch surface. It is usually observed for axial stress, 
maximum principal stress, but not for Huber-Mises-Hencky 
(HMH) stress. For maximum principal stress, the minimum 
of the relative stress gradient is calculated from the equation

                           (3)

where:
σyy – maximum principal stress,
r – radius in the calculation plane.

In order to obtain the proper relative stress gradient, the 
calculations should be done for the continuous function 
of stress, which allows to establish the inflexion point, the 
effective distance and, finally, the fracture process zone. 

An additional aspect of making distinction between the 
mentioned non-local methods can be the method of stress 
calculation. Some authors perform stress calculations using 

the FEM method and elasto-plastic material properties [6, 8, 
10, 16]. This procedure requires the knowledge of the Ramberg-
Osgood equation parameters.  The stress in the vicinity of 
the notch is known to be usually above the cyclic yield stress. 
Hence, determining the stress tensor is an important task, as 
it decides about the obtained effective lengths. The effective 
stress values can be calculated using the FEM method and 
the multi-linear hardening model. It provides good stress 
(effective stress) results, which can be in proper way compared 
with the values read from smooth specimen fatigue curves. 
Some non-local fatigue criteria base on the weight function, 
which makes it possible to take into account the meaning 
of different material layers during fatigue processes. In the 
literature, two interesting weight functions can be found [6, 
8]. They are used in the area method, nevertheless they can 
be adopted to the line methods. In the method presented in 
[6], the weight function is equal to 1 for surface layers and 
for layers on which the maximum stress point occurs (Fig. 
2). The weight function should include values within the 
interval <0÷1> and should satisfy the following conditions:

                         (4)

Fig. 2. Distribution of stress and weight function [1]

In [26], the authors describe the weight function as 

             (5)

where:
σeq – equivalent stress,
σmax – maximum value of equivalent stress,
θ – angle of vector r.

According to this equation, the distance between the 
surface and the maximum effort point can be considered as 
the maximum effort area. Nevertheless, for the  case of elastic 
condition, when the stress value is close to the cyclic yield 
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stress, or when the plastic strain is very small, the weight 
function is equal to 1 only on the surface.

The weight function proposed in [8] (Fig. 3) is described as 

                                   (6)

where:
r – vector applied at the maximum  effort point,
lc – critical length which determines the calculation area.

Fig 3. Weight function and different values of critical length [8]

Graphical representation of this weight function is the 
half plot of the normal Probability Density Function (PDF), 
where the critical length lc plays the main role.

According to the previously mentioned issues, the essence 
of the method presented in the article consists in finding the 
value of effective length. The presented model is a modification 
of three models [6, 8, 16]. It allows the calculation to be 
performed in the elastic or elasto-plastic state of strain. 

EXPERIMENTAL TESTS OF SMOOTH AND 
NOTCHED ELEMENTS

In order to meet the requirements of the proposed model, 
a series of experimental tests had to be done. The available 
literature publications on the subject do not contain complete 
data necessary to perform the planned calculations. The 
performed experimental tests were expected to provide 
the data for smooth and notched specimens. For smooth 
specimens (Fig. 4), the experimental tests of the tension-
compression loading mode were performed. It allowed to 
determine the Wöhler fatigue curve and cyclic material 
properties. Mechanical properties of 40 HM-T (42CrMo4+QT) 
steel are presented in Table 1, while its chemical composition 
is given in Table 2. The cyclic hardening coefficient K’ and 
the cyclic hardening exponent n’ are material constants, 
which were used to describe the cyclic hardening curve in 
the FEM analysis. Strains were measured with the aid of 
an extensometer, which allowed to record a hysteresis loop. 
The fatigue tests were done with force control. The obtained 
fatigue curve is presented in Fig. 5. The specimens were 

made according to the Polish Standard PN-84/H-04308, 
and the tests were performed according to the standards 
ASTM 739-80.

Fig. 4. Geometry of smooth specimen

Tab. 1. Mechanical properties of 40 HM-T (42CrMo4+QT) steel 

Young’s 
modulus E, 

GPa

Poisson’s 
coefficient ν, -

Static yield 
strength σY, MPa

Ultimate tensile 
strength σUTS, 

MPa
210 0.31 1074 1170

Cyclic yield 
strength σY’, 

MPa

Cyclic hardening 
coefficient K’, 

MPa

Cyclic hardening 
exponent n’, -

600 1750.5 0.095

Tab. 2. Chemical composition of 40 HM-T (42CrMo4+QT) steel (Fe the rest)

C Mn Si P S

0.44 0.77 0.27 0.011 0.008

Cr Ni Cu Mo Al

1.18 0.12 0.19 0.18 0.022

Fig. 5. Smooth specimen fatigue curve

The next series of experimental tests were performed with 
notched specimens subjected to cyclic bending. In order to 
compare  different stress values at notch tip and the influence 
of the stress gradient on the number of cycles before crack 
initiation, two types of notch radius in the tested specimens 
were applied (Fig. 6). The values of the notch radius R in the 
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specimen were respectively equal to 0.2 mm, 0.5 mm, 0.8 
mm, and 1 mm.

Fig. 6. Geometry of notched specimen

The crack length of 0.1 mm was assumed as the criterion 
of crack initiation. This value was accepted bearing in 
mind the camera capacity which enabled cracks of this 
length to be observed first. To create the Wöhlers fatigue 
curves, the number of cycles before  crack initiation and the 
stress values  calculated by the FEM code were used. Due 
to a complex state of stress at notch tip, the stress values 
were calculated according to the HMH hypothesis. Details 
of calculations are presented in the next chapter. Figure 7 
shows the Basquin characteristics determined for smooth 
and notched specimens, for R = 0.5 mm and 1.0 mm and for 
the cycle number between 104 and  106. The calculated linear 
regression coefficients of the equation are presented in Table 3.  

                              (7)

where: 
A and m - constants of the regression model.

Fig. 7. Basquin fatigue curves for smooth and notched specimens

Tab. 3. Linear regression coefficients for smooth and notched specimens

Type of specimen  A, - m, -

Smooth 25.02 7.39
Notched,

R = 0.2 mm 22.56 6.11

Notched,
R = 0.5 mm 24.201 6.85

Notched,
R = 0.8 mm 22.70 6.40

Notched,
R = 1 mm 24.37 6.98

FINITE ELEMENT METHOD 
CALCULATIONS

The performed calculations have the form of  static non-
linear analysis making use of the multi-linear hardening 
model. This type of calculations requires a powerful computer, 
due to a large number of elements in the solid model. Since 
the width of the specimen was relatively large, compared to 
its height, the plane strain state was used in the FEM analysis. 
Nevertheless, the calculations were also performed for the 
plane stress state. The obtained relation between effective 
length and nominal stress, and the  comparison between 
the experimental and calculated fatigue life, are similar 
to those obtained in the plane strain state. Cyclic material 
properties and the multi-linear hardening model for 40 HM-T 
(42CrMo4+QT) steel are presented in Figure 8. The analyses 
were conducted in the ANSYS software environment, making 
use of the second order 8-nodes 2D element PLANE183. 
The influence of the order of element on the accuracy of 
FEM analysis of notched specimens was checked in [3]. The 
accuracy of FEM notch models depends not only on the 
characteristic mesh size [5], but also on mesh morphology [4]. 
To ensure control of the notch root element shape,  mapped 
meshes with circular sub-areas [4] were used (Fig. 9). The 
characteristic mesh size near the notch root was 0.033 mm, 
while that for the remaining part of the specimen was 0.1 mm. 

Fig. 8. σa - εa relations for 40 HM-T steel

Fig. 9. Mesh structure near notch root for specimen R=0.5 mm
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Selected sample results of the notched specimen analysis 
for R=0.5 mm and 1mm, and for the same loading level 
(nominal stress equal to 402.5 MPa, are shown in Fig. 10.

a)

b)

Fig. 10. Results of FEM analysis for notched specimens with a) R=0.5 mm (σyy 
stress, MPa) and b) R=1 mm (σyy stress, MPa)

Changes of stresses σyy  and σHMH along the plane 
perpendicular to the specimen axis (predicted critical plane) 
are shown in  Fig. 11.

Fig. 11. Values of stresses σyy and σHMH along the plane perpendicular to the 
specimen symmetry axis,  for a) R=0.5 mm and b) R=1 mm

CONCEPT OF NON-LOCAL LINE METHOD

As mentioned in Introduction, non-local line methods 
base on determining the fracture process zone, which is 
represented by some length. The main rule is that this zone 
should contain the highest stress region. The first task in 
this method is to determine the critical plane in which the 
calculation should be done. The critical plane is determined  
under an assumption that the crack initiation starts on the 
notch tip surface and then propagates in a plane where the 
normal stress is the highest. It has been proved experimentally 
that the crack initiation point is very close to the point at 
which the maximum value of HMH stress is recorded. Due 
to this fact, the position of the critical plane is determined by 
the point on the surface where HMH stress has the maximum 
value. This is well justified, as  at this point the multi-axial 
state of stress is the highest and crack initiation most likely. 
Hence, at this point the critical plane is determined according 
to the equation

                                    (8)

where:
σ – stress,
η – position of the plane,
n – vector normal to the surface,

	
The position of the critical plane is determined in the 

established coordinate system in which the x-axis is parallel 
to the roll axis of the specimen and the angle is  measured 
in the yz-plane (Fig. 12).

Fig. 12. Principle of critical plane position measurement
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The next step was to interpolate stress  values in the 
defined plane and calculate  stresses according to Eq. (8). 
It was done using the interpolation method available in the 
Matlab software. The interpolated gradient of stress ση was 
then averaged according to the equation

                          (9)

where:
σeq – equivalent failure stress,
Q – weight function,
lef – effective length.

The effective length lef is the scope at which averaging 
is performed. The used weight function Q bases on the 
assumption proposed in [8]. Physical meaning of the weight 
function is that it takes into account  weights of particular 
layers in the fracture process. It represents a half of the normal 
PDF and it has values between 0÷1. However, in cases of 
greater plastic strain, the stress has the maximum at a certain 
distance below the surface. It means that the highest stress 
point has the weight smaller than 1. Hence, some modification 
of the weight function was proposed, in which the  layers 
between the element surface and the plane of highest stress 
point ση have also the weights equal to 1. It is described by 
the following formula 

                   (10)

where:
 – length for which maximum value of ση occurs.

For smooth specimens without stress gradient, lef is equal 
to 0 and the weight of each layers is equal to 1. The weight 
function and the stress distributions are shown in Fig. 13. The 
length lef is determined using the numerical iteration process 
done by a special programmed script. The iteration point 
for which σef has greater value than the stress in the smooth 
specimen for the same number of cycles is the inflexion point, 
which determines the value of lef. It is important to notice 
that the obtained values of lef can differ depending on the 
loading level. 

Fig. 13. Sample stress and weight function distributions along length

ANALYSIS OF RESULTS  

A set of final values of lef can be presented as a function 
of bending nominal stress σnom. It clearly shows the relation 
between the loading level and lef. The results for two notch 
radius values are presented in Fig. 14 and Fig. 15. Additionally, 
linear regression was done based on the obtained points. It 
can be seen that the relation between lef and σnom is linear. 

Fig. 14. Relation between effective length and nominal stress for notched 
specimen with R=0.5 mm. Correlation coefficient r = 0.989

Fig. 15. Relation between effective length and nominal stress for notched 
specimen with R=1 mm.  Correlation coefficient r = 0.982

The effective length dependence on both nominal stress 
and stress concentration factors can be represented by a 
plane (Fig. 16). The values of stress concentration factor kt for 
different specimen geometries are presented in Table 4. Based 
on the results of  calculations for 40 HM-T (42CrMo4+QT) 
steel, the plane equation can be established using multiple 
regression and 95% confidence bounds (the design curve 
based on 95% lower confidence limits). 

Tab. 4. Values of stress concentration factor kt for notched specimens

Type of 
specimen R = 0.2 mm R = 0.5 mm R = 0.8 mm R = 1.0 mm

kt 3.7 2.6 1.8 1.4
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Fig. 16. Relation of effective length with stress concentration factor and 
nominal stress for 40 HM-T (42CrMo4+QT) steel notched specimen

Based on the calculated values of effective lengths, the 
plane equation for 95% lower confidence limit has the form:

           (11)

A comparison between the calculated and experimental 
fatigue life for the cycle number ranging between 104 and 
106 is given in Fig. 17 and 18. It can be noticed that in each 
case the scatter is smaller than 3. This scatter results from 
the use of linear regression in the fatigue curves and in the 
function .

Fig. 17. Comparison between experimental and calculated fatigue life for 
notched specimens with R= 0.5 mm

Fig. 18. Comparison between experimental and calculated fatigue life for 
notched specimens with R= 1 mm

It is clear that from an engineering point of view, one 
constant value of lef is desirable. Analysing the calculated 
values of lef , the smallest value can be considered  conservative. 
However, the range of stress calculated by the FEM code 
should also be mentioned. For the performed research, lef 
can be equal to 0.21 mm for the local effective stress ranging 
between 200÷450 MPa.

CONCLUSIONS

In non-local methods, the most important issues refer to 
proper determination of the fracture process zone and the 
equivalent stress. The stress distribution calculated in  the 
elasto-plastic range differs from that calculated in the elastic 
range, which leads to different values of effective length. The 
other important issue is determining the plane in which the 
calculations are to be  done. This plane should comply with 
the experiment. Based on the performed experimental tests 
and numerical simulations, the following main conclusions 
can be listed:
1.	 The position of the critical plane has been  determined 

at the point where the multiaxial state of stress is the 
greatest.

2.	 The calculated position of the critical plane complies 
with that observed during fatigue tests.

3.	 The normal stress calculated in the defined plane has 
been established to be responsible for fracture.

4.	 In the notched element, a sub-area has been indicated 
between the outer surface of the element and the place 
at which the normal stresses reach the maximum. The 
normal stress values in this sub-area have the greatest 
impact on the effective length value.

5.	 The calculated effective length is not a constant value. 
The effective length increases as the load increases, but 
decreases when the stress concentration factor increases. 
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