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ABSTRACT

A grey box framework is applied to model ship maneuvering by using a reference model (RM) and a support vector 
machine (SVM) (RM-SVM). First, the nonlinear characteristics of the target ship are determined using the RM and 
the similarity rule. Then, the linear SVM adaptively fits the errors between acceleration variables of RM and target 
ship. Finally, the accelerations of the target ship are predicted using RM and linear SVM. The parameters of the 
RM are known and conveniently acquired, thus avoiding the modeling process. The SVM has the advantages of fast 
training, quick simulation, and no overfitting. Testing and validation are conducted using the ship model test data. 
The test case reveals the practicability of the RF-SVM based modeling method, while the validation cases confirm the 
generalization ability of the grey box framework.
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INTRODUCTION

A report by the International Maritime Organization 
(IMO) pertaining to the global use of autonomous systems 
indicated that autonomous ships may be launched soon [1]. 
Ship maneuvering modeling is the key element of ship motion 
prediction (kinematics and kinetics), simulation and control 
of autonomous ship navigation, and collision avoidance [2]. 
Ship maneuverability has received increasing attention from 
the shipping industry. 

Generally, there are several primary methods based on 
captive model test, free model test, full-scale trials, and 
computational fluid dynamics (CFD) [2-4] which are used 
for maneuvering simulations. The reports of the International 

Towing Tank Conference (ITTC) offer a broad overview 
of many available ship modeling methods [4]. To obtain the 
ship hydrodynamic force and ascertain the hydrodynamic 
coefficients, captive model tests, such as planar motion 
mechanism (PMM) and circular motion test (CRM), 
and other complicated and expensive tests, must be used 
repeatedly [5]. CFD is a crucial method for theoretical 
calculations and has a long history. As the performance of 
computers has been improving with time, CFD can be utilized 
much more effectively. However, CFD analyses need human 
experience to build a suitable grid, and remain excessively 
time-consuming for online ship motion prediction [3]. The 
overview of methods to develop a ship maneuvering model 
reveals that system identification has a significantly lower 
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cost and requires considerably lower effort. However, this 
method is not as precise as the free running model test, the 
captive model test, or CFD [4]. This implies that, despite 
their drawbacks, the captive model tests and CFD realize 
a more accurate model. Therefore, to increase its accuracy, 
the system identification method should be improved on the 
basis of free model tests and full-scale sea trials.

The system identification method fits the test data and 
conducts generalization ability simultaneously. When a ship 
is sailing on the sea, its sailing conditions change constantly 
due to the action of environmental disturbances and changing 
load conditions. For ship motion control and prediction, 
the system identification method can simulate the future 
trajectory and velocity by using sensors. Researchers of ship 
motion identification modeling have made many attempts to 
deal with this problem [6-13], and their results are classified 
as white box, black box, and grey box identification.

For white box system identification, Abkowitz introduced 
an EKF to identify model parameters during ship sea trials [6]. 
Other researchers used partial least squares regression, multi-
innovation least squares (MILS), and linear support vector 
machine (LS-SVM) approaches to verify the parameters [7-9]. 
However, the parameters could not be identified using partial 
least squares regression for a ship in motion under wind 
or wave disturbances, and MILS and LSVM did not yield 
accurate simulations. Kallstrom used the pseudo random 
binary sequence (PRBS) as the maneuver signal [10]. Yoon 
applied ridge regression to figure out the parameters, and 
improved the PRBS and D-optimal maneuver scheme [11]. 
Sutulo and Soares presented an offline system modeling 
method using five different learning metrics and genetic 
algorithm (GA) based parameter optimization [12]. However, 
the GA only obtains the learning parameters with a fixed 
interval on the basis of theoretical or database methods.

Many studies have been conducted on black box system 
identification. Haddara obtained an optimal effect by 
estimating derivatives with neural networks, but the network 
training was time consuming [13]. Wang (2015) proposed 
a fuzzy neural network for system identification modeling 
[14]. Faller presented a maneuvering motion model by using 
a recursive neural network (RNN), for which a number of 
numerous turning circle and zigzag maneuvers were utilized 
as training tests [15]. Moreira proposed an RNN maneuvering 
simulation model for turning circle and zigzag maneuvers, 
but this method also required a lot of training tests [16]. 
Oskin presented an RNN to identify a ship motion response 
model that neglects ship speed prediction [17]. On the basis 
of multiple tests, Bai used the locally weighted learning to 
predict maneuvering motion by using the black box structure. 
However, the maneuver scheme for identification was not 
suitable as good seamanship handling required [18]. Zhu 
used a least squared SVM and optimized it with the artificial 
bee colony method, but the surge velocity was not verified 
for a zigzag test [19]. Luo proposed a method in which the 
reconstruction of sample data was identified using an SVM, 
and no verification was conducted for the turning test [20]. 
Thus, system identification methods require considerable ship 

motion test data and have poor generalization ability. For 
the grey box identification, Wang used SVM to get the ship 
maneuvering model without ship’s principal particulars [26]. 

Motivated by these observations, we aim to address the 
problems in ship motion identification. Despite improvements 
in the precision of system identification for ship motion since 
the ITTC 2005, some difficulties have not been overcome yet.

Firstly, it is not very feasible to use simulation data for 
system identification. When the simulation test data is 
without noise, it has higher quality and can be easily used 
for identification. However, in practical scenarios, the test 
data contains measurement errors and disturbances from 
the sea environment. Secondly, the period, frequency and 
other characteristics of the input signals in the simulation 
test, such as the sinusoidal rudder angle and pulse signals 
[14], and the PRBS and D-optimal signals [10,11], are relatively 
broad. However, a sinusoidal rudder angle cannot be easily 
obtained for the steering control system. Moreover, for sea 
trials, the IMO proposed a maximum allowable rudder angle 
(+20°/−20°) as a test scheme standard for ship maneuverability. 
Therefore, although the identification of simulation data is 
better than trial data, it is difficult to obtain training data in 
full-scale trials.

The sea trials are only conducted in light ballast or heavy 
ballast conditions. Therefore, for using the data of the ship 
trial test as the identification data, the ship maneuvering 
ability should be converted from the ballast condition to 
the full load condition [21]. Thus, the sea trial test is not 
convenient for identification modeling. This implies that the 
test data under the full load condition are more suitable for 
ship operation with inadequate excitation. The aim of this 
study is to improve the precision of identification modeling 
and to reduce the data set for identification, thus reducing the 
effort, time, and cost required for modeling. These problems 
are addressed using the features of the reference model (RM).

PROBLEMS AND PRELIMINARIES

The aim of the grey box approach is to model ship 
maneuvering and describe the trajectory and velocity of 
the ship during navigation on the sea. In this section, the 
problems of ship maneuvering are presented and simplified. 
Then, the grey box structure is correlated with ship velocities 
and accelerations, and utilized to address the aforementioned 
problems.

PROBLEMS

During sea navigation, the ship motion is typically 
described in three degrees of freedom (3 DOF). A 3-DOF 
model is equivalent to a horizontal plane model with surge, 
sway, and yaw motion. There are two assumptions for this 
model. Assumption A: On the basis of the rigid-wall boundary 
condition, the free surface is regarded as a fixed horizontal 
plane [22]. Assumption B: The 3-DOF model is a specific 
horizontal plane model. The motions can be decoupled into 
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longitudinal and lateral motions. Moreover, sway and yaw 
are coupled. On the basis of these assumptions, the model 
can be described as Equation (1) [23]:
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where m  represents the mass of the ship; Gx  represents the 
gravity center of ship’s mass; ( ,x y ) is the trajectory of the 
ship’s gravity center; ψ  is the ship course; , ,u v r  are the 
velocities of surge, sway, and yaw motion, respectively; zI  
is the moment of inertia; and , , ,u v r vX Y Y N
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constants. Equation (1) can be rewritten as Equation (2):
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The ship hydrodynamics functions 1G , 2G , and 3G  on 
the right-hand side of Equation (2) are purely related to the 
ship maneuver state ( u , v , r ,δ ), which determines ship 
accelerations.

PRELIMINARIES OF THE GREY BOX FRAMEWORK

To resolve the ship maneuvering problem, system 
identification modeling is used to quantify the relationship 
between ship motion velocities and accelerations. RM-SVM 
is a grey box framework used for system identification. In this 
section, the concepts of general grey box and RM-SVM are 
introduced. Then, the framework and flowchart of RM-SVM 
are presented.

Based on Ljung’s description [24], combining the 
identification model with a nonlinear static model and 
a linear dynamic model gives a slate grey model. The RM, 
being a concept from adaptive control [25], is an approximate 
model of the controlled object. For ship maneuvering, an 
existing mathematical model can be used as RM, which is 
a nonlinear static model. Hence, as presented in Figure 2, 
the nonlinear static model, the RM, and the nonlinear ship 
motion model are identical and belong to the same category. 
Then, a linear SVM is used as the learning algorithm, which 
is equivalent to a linear dynamic model. The dynamic model 
approximates the error between the target ship and the RM. 
The conceptual evolution path of the slate grey model, RM, 

and ship motion grey box identification model is presented 
in Figure 1. 

Nonlinear 
static 
model

Linear 
dynamic 
model

Reference 
model

Learning 
algorithm

Nonlinear 
ship 

motion 
model

Linear
SVM

Concept A
Slate-grey model

Concept B
Model reference 

identification

Concept C
Ship motion grey-box 

identification

+

+

+

Identified 
system

Identified 
model

Target 
ship

=

=

=
Fig. 1. Conceptual evolution path of the slate grey box, reference model, 

and ship motion grey box identification frameworks

It is noteworthy that the SVM has been used as grey box 
[26]. There are three differences between SVM and RM-SVM, 
although SVM is used in RM-SVM. As shown in Figure 2, 
firstly, the outputs of SVM and RM-SVM are different. 
Secondly, the accelerations consist of RM and errors between 
RM and target ship. Thirdly, the system in SVM is a discrete-
time system, while in RM-SVM it is a continuous-time system. 
Therefore, RM-SVM is different from SVM. Furthermore, 
SVM is an artificial intelligent (AI) algorithm in RM-SVM, 
and can be replaced by any other regression algorithm, e.g. 
neural network, decision trees, and logistic regression. Since 
the RM can be verified and advanced, RM modeling provides 
robust estimation of ship velocities when SVM fails.

As presented in Figure 2.b, ship maneuvering is a time-
consuming task, and accelerations are selected as inputs and 
output of the grey box system. The steps of grey box modeling 
are as follows:
a: Select an existing nonlinear ship maneuvering motion 

model as the RM.
b: Convert the target ship velocities Tu , Tv , and Tr  to the RM 

velocities Ru , Rv , and Rr , respectively.
c: Calculate the RM accelerations Ru , Rv , and Rr , and the RM 

velocities Ru , Rv , and Rr ; the rudder angle is Rδ . 
d: SVM compensates the acceleration errors of the target 

ship and the RM.
e: Adaptively tune the SVM parameter.
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Fig. 2. Comparison of grey box framework based on SVM [26] and RM-SVM 
for ship motion identification modeling

GREY BOX MODELING

In this section, the details and content of the application of 
the RM-SVM are presented. Firstly, the RM is selected, and 
then the target ship velocities are converted to the RM. As 
the third step, the SVM is obtained for use in the RM-SVM. 
Finally, adaptive tuning of the SVM parameter is done. 

SELECTION OF RM

Several models used for ship maneuvering were mentioned 
in [19]. Nonlinear static models, such as the response model of 
sway motion, the Mathematical Maneuvering Group (MMG) 
response model, and the Abkowitz model, can be employed as 
the RM. It is crucial to select a suitable RM from the existing 
models. The selected RM should be most suitable for the 
target ship. 

On the basis of [27], we consider the particular vector p  
as the feature of the ship. Moreover, ,Cb  is the ship block 
coefficient, Lpp  is the length between perpendiculars, B  is 
the ship beam, T  is the ship draught, 0V  is the speed of the 
designed ship, and Ar  is the rudder area. Thus, we obtain 
Equation (3):

p = ( ,Cb / ,Lpp B / ,B T 0/ ,Lpp V / ( ))Ar Lpp T⋅      (3)

The matrices P  comprise p , which can be expressed as 
Equation (4): 
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Let 1( , ..., , ..., )Ti i ij in= P P P ;; m = 5; i  = 1, 2, ...,m ; 
and j  = 1, 2,…, n. Then, the normalization of the particular 
matrix P  can be given as Equation (5):
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Let 1 2 ( , , ..., )Tn=Q  and ( 1q , 1q , …, nq ) T=Q . 
The normalization particular vector is iq . Then, the coefficient 

iγ  of the relationship between 1q  and iq  can be written as 
Equation (6):
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The ship corresponding to the maximum γ  is most similar 
to the target ship and is selected as the RM. In other words, 
the order and structure of the selected RM are approximately 
equal to those of the target ship.

CONVERSION OF VELOCITIES

The target ship and the RM have differently designed 
standard states, therefore the velocities of the target ship 
should be converted to the RM. Two conversion methods 
have been proposed by SNAME [28] and Norrbin [29]. In this 
study, the normalization forms from the study by SNAME [28] 
were introduced, including ship surge, sway and yaw motion, 
and rudder angle. These states are expressed as Equation (7):
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where ( )T⋅  represents the target ship and ( )R⋅  represents 
the RM. Here, 0V  is the service speed and Lpp  is the length 
between perpendiculars.

According to Equation (2), the accelerations of the RM 
are expressed as Equation (8):
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SVM

On the basis of the flowchart of ship motion grey box 
modeling, the function relating the RM and the target ship 
is modeled through regression learning algorithms, such 
as SVMs, neural networks, Gauss regression models, and 
decision trees. In this study, the SVM was utilized [30].

The RM velocities, ( )T T T Tu v r δ=x , , , , are defined as the 
state variables. Then, the acceleration error between the target 
ship and RM is 1 1 2 2 3 3( , , )T R T R T RG G G G G G= − − −y . Consider 
surge acceleration as an example. The Lagrangian function 
of the linear SVM for the surge acceleration error is defined 
as Equation (9):
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By using sequential minimal optimization (SMO) to 
solve the Lagrangian function, the regression function 1iy  
is obtained as Equation (10):
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where 1C  is the regularization factor, 1e is the regression error, 
1w  is the weighted function, 1b is the bias, and ( , )x x  is 

the linear kernel function  written as T⋅x x .
Thus, the surge acceleration of the target ship is 1iy  + 1RG . 

Similarly, the acceleration of the target ship can be expressed 
by Equation (11):
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ADAPTIVE TUNING OF SVM 

The insensitive band ε  is the SVM parameter that should 
be tuned. This parameter determines the incorrect sample 
data to be ignored in the SMO solver. In this study, adaptive 
tuning based on the pattern search algorithm has been 
introduced. The search range of ε  is [0,1] . The parameters 

1ε , 2ε , and 3ε  are insensitive bands for surge, sway, and yaw 
accelerations in Equation (11), respectively. As presented in 
Figure 3, the following search steps are performed:

Step 1: Prepare the training data for the RM-SVM; 
Step 2: Initialize 1ε , 2ε , and 3ε  in the SVM. 
Step 3: Conduct the pattern search. 
Step 3.1: Generate the mesh grid of 1ε , 2ε , and 3ε  ranges 
Step 3.2: Conduct SMO on the SVM.
Step 3.3: Simulate the training test.
Step 3.4: Calculate the Pearson correlation coefficient 

λ  between the heading angles obtained from the training 
test and simulation.

Step 3.5: If the coefficient λ  is less than the threshold, 
then repeat Steps 3.1 to 3.5. Otherwise, go to Step 4.

Step 4: Record the optimal values of 1ε , 2ε , and 3ε .
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Fig. 3. Adaptive tuning of insensitive bands in SVM and RM-SVM based 
prediction  

PREPARATION

To verify the effectiveness of grey box modeling for ship 
maneuvering, a free running model test was used and the 
training test was simulated. Then, the free running model 
test was validated for estimating the generalization ability. 

TEST DATA

KVLCC2 is a benchmark ship used for validation of ship 
maneuvering models, performed using the system based 
maneuvering simulation method, CFD-based maneuvering 
simulation method, and other no simulation methods. Its 
particulars are presented in Table 1. The data from these two 
faculties were converted using the prime system [22].
Tab. 1. Particulars of target ship KVLCC2

Particulars model Full scale

Scale 45.7 1

Length (m) 7.0 320.0

Maximum breadth (m) 1.17 58.0

Draught (m) 0.46 20.8

Block coefficient 0.81 0.81

Maximum rate of rudder (°) 15.8 2.34

Service speed (knots) 1.18 7.9

The free running model test in basin generates sample 
points with sampling frequency of 1 Hz. The test type, the 
rudder angle, and other maneuver scheme information of 
the test data for study cases are given in Table 2. The tests 
were performed in the basin, in which the max test rudder 
of the zigzag maneuver is less than or equal to 20°. Therefore, 
the test data with minor rudder angle was used to identify 
the RM-SVM. As presented in Table 3, a relatively small 
amount of training data was used compared to other studies 
[15][18][31], and the validation data was different from the 
training data.
Tab. 2. Training and validation data 

Training cases 

Test type Rudder and 
heading angle Sample points Port/

starboard

Zigzag test 10°/10° 520 starboard

Zigzag test 10°/10° 565 port

Zigzag test 20°/20° 606 starboard

Zigzag test 20°/20° 684 port

Validation cases 

Test type Rudder angle Sample points Port/starboard

Turning circle 35° 1610 starboard

Turning circle -35° 1151 port

Tab. 3. Comparing test data in the current study and related studies

Training data Current 
study

Bai
[18]

Wang
[31]

Hess
[15]

Zigzag

Contained Yes Yes Yes Yes

NO. of Case 4 4 2 2

Max rudder 20 30 20 20

Turning 
circle

Contained No Yes * Yes Yes

NO. of Case No 4* 2 4

Max rudder No 30 15 35

Validation test different 
from training Yes No No No

The 20°/20° zigzag test is presented as an example in 
Figure 4. Spline filters were used to indicate sway velocity 
and sway acceleration.

t(s)
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m

/s]

0  200 400 600
-1.5

-1  
-0.5

0   
0.5 

1   

v_filter

v_measmt

0  200 400 600

-0.015

0     

0.015 

t(s)

[m
/s2 ]

v

Fig. 4 Sway velocity and acceleration obtained from the filter
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RM FOR KVLCC2

Four RMs were used for selecting a proper RM for KVLCC2 
[21][23]. The particulars are presented in Table 4. On the basis 
of the selection conducted to obtain suitable progress in grey 
box modeling, the correlation coefficients γ  between the 
RMs and KVLCC2 were estimated (−0.5758, 0.8510, −0.8873, 
and −0.7228). The maximum γ  was 0.8510. Therefore, the 
“Tanker” was selected as the RM.
Tab. 4. Particulars of the Tanker RM

Name KVLCC2 Mariner
[23]

Tanker
[23]

SR108
[21]

PCC
[21]

Structure *** Abkowitz Abkowitz MMG MMG

Cb 0.90 0.60 0.83 0.56 0.55

Lpp B 5.52 6.95 6.39 6.89 5.60

B T 2.79 3.10 2.58 2.99 3.93

0Lpp V 40.1 20.9 37.0 14.1 ≈ 18.0

( )Ar LppT 1/48.7 1/83.1 ≈ 1/61.0 1/45.8 1/39.8

ERRORS BETWEEN RM AND KVLCC2

Following Equation (7), the velocities of KVLCC2 were 
converted to those of the RM Tanker. Moreover, Ru , Rv , Rr , 
and Rδ  were selected as the inputs for Tanker, and the outputs 
were Ru , Rv , and Rr . Figure 5 compares the accelerations Ru , 

Rv , and Rr   with Tu , Tv , and Tr . The result of the comparison 
is approximated by a line. The relationship coefficients are 
0.99, 0.94, and 0.87, which implies that the nonlinear dynamics 
of KVLCC2 is very well replicated by the Tanker.

Reference modelKVLCC2

0 100 200 300 400 500
-2

0

2
10 -4 Yaw acceleration

0 100 200 300 400 500
-0.02

0

0.02
Sway acceleration

0 100 200 300 400 500
-15

-10

-5

0

5
10 -3 Surge acceleration

Fig. 5. Comparing accelerations of KVLCC2 and RM

CASE STUDIES

In order to illustrate the prediction performance of the 
presented grey box model based on RF-SVM, four zigzag 
tests: 10°/10°, -10°/-10°, 20°/20°, and -20°/-20° were used for 
training. After that, two validation cases of 35° and -35° 
turning circle were tested.

ADAPTIVE TUNING OF INSENSITIVE BAND

The parameters 1ε , 2ε , and 3ε  are the insensitive bands 
for surge, sway, and yaw accelerations. On the basis of 
adaptive tuning steps, a 20°/20° zigzag test was chosen as 
the simulation test. The Pearson correlation coefficient λ  of 
the heading angle in the 20°/20° zigzag test was calculated. The 
optimal insensitive bands obtained from the pattern search 
correspond to the maximum value of coefficient maxλ . As 
presented in Figure 6, 1ε , 2ε , 3ε , and λ  change with the 
iteration of the pattern search and converge to 0.005, 1, 1, 
and 0.993, respectively.

Fig. 6 Iterations of 1ε , 2ε , 3ε , and λ

TRAINING CASE FOR 20°/20° ZIGZAG MANEUVER

To assess the effectiveness of the RM-SVM approach, 
a training case was simulated. By using Equation (10), the 
20°/20° zigzag maneuver was predicted and the heading, 
velocities, and trajectory were acquired. Then, the results 
were compared with those of the CFD method from Hyundai 
Maritime Research Institute (HMRI) presented by Sung [32] 
and model experiments from NMRI presented by Yasukawa 
[33]. The results of the above three methods were further 
compared with those from the free running model test called 
EXP-MARIN and performed at the Maritime Research 
Institute Netherlands (MARIN). However, the studies [32] 
and [33] have included headings rather than velocities. The 
variables presented in Figure 7 were made dimensionless 
using the method proposed by Norrbin [29].
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Figure 7 shows that RM modeling has the advantages of 
robust prediction and base estimation. Especially, the base 
estimation of ship velocities by RM is labeled, and more 
accurate estimation of RM-SVM is shown.

The first and second overshoot angles (OSA) are presented 
in Table 5. Their comparison reveals that the RM-SVM 
has optimal performance and prediction accuracy for the 
training data. The prediction of the training test is not very 
accurate. When the overfitting occurs, the training data fits 
effectively, but lower accuracy is attained for the validation 
data. The accuracy of the prediction for the training test of 
the 20°/20° zigzag maneuver is acceptable, which implies 
that the validation test has an optimal generalization ability.
Tab. 5. OSA predictions of 20°/20 zigzag maneuver obtained from various methods 

Methods EXP-MARIN EFD-NMRI RM-SVM CFD-HMRI

1st OSA 13.8 10.9 11.8 11.7

2nd OSA 14.9 17.0 14.3 16.5
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Fig. 7. Prediction variables of 20°/20° zigzag test

VALIDATION CASE FOR GENERALIZATION ABILITY 
OF 35° TURNING CIRCLE

Being an AI algorithm, SVM should be verified. The same 
refers to the RM-SVM grey box. Therefore, a validation 
case was simulated to show the generalization ability of 

the presented method using the RM-SVM. On the basis 
of Equation (11), the 35° turning circle case was used for 
RM-SVM performance validation. After that,  the results 
of the CFD-PMM simulation from the Shanghai Jiao tong 
University (CFD-SJT) [34], the experimental fluid dynamics 
(EFD) method from NMRI (proposed by Hironori Yasukawa) 
[33], and the CFD of HMRI developed by Sung and Park 
[32] were collected. The results of these methods and the 
proposed method were compared with the EXP-MARIN free 
running model test, which is considered most accurate. The 
surge, sway, and yaw speeds are included in CFD-SJT merely. 
Thus, the velocities obtained using the proposed method were 
compared with those obtained using CFD-SJT. Moreover, the 
trajectory obtained using the proposed method was compared 
with those from EFD-NMRI, CFD-HMRI, and CFD-SJT.

The time-histories of variables predicted by the 
aforementioned methods for 35° turning circle test are given 
in Figure 8. 
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Fig. 8. Prediction variables of 35° turning circle for generalization ability 
validation

The geometries of the turning circles obtained using 
different methods are compared in Table 6. The precision 
of the advance predicted by RM-SVM is outstanding, while 
the predicted tactical diameter obtained from RM-SVM is 
average.
Tab. 6. Advances and tactical diameters predicted by different methods 

for the 35° turning circle case 

Methods EXP-MARIN EFD-NMRI RM-SVM CFD-HMRI CFD-SJT

'
DA 3.25 3.31 3.22 3.12 3.63

'
TD 3.34 3.36 3.20 3.4 2.87

VALIDATION CASE FOR GENERALIZATION ABILITY 
OF −35° TURNING CIRCLE

The -35° turning circle is another validation case for 
verifying generalization ability of the proposed method. 
As presented in Figure 9 and Table 7, the variables in the 
method proposed by Norrbin are dimensionless. The advance 
predicted by the RM-SVM is similar to the best of those 
predicted by other methods, while the tactical diameter is 
average. The approximation ability of RM is shown in Figure 9.
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Tab. 7. Advances and tactical diameters predicted by different methods for the 
-35° turning circle case

Methods EXP-MARIN EFD-NMRI RM-SVM CFD-HMRI CFD-SJT

'
DA 3.25 3.26 3.26 3.00 3.75

'
TD 3.34 3.26 3.24 3.14 2.88

ANALYSIS

The kinetic variables obtained from the simulations 
of the zigzag maneuver and turning circles indicate that 
the ship motion identification matches the target ship 

KVLCC2. The RM-SVM predicts the ship trajectory 
with high accuracy. Thus, the prediction of the 20°/20° 
zigzag maneuver performed as the training test proves 
the effectiveness, and the predictions of the 35° and −35° 
turning circle tests present the generalization ability of the 
RM-SVM approach. What is noteworthy, the simulations 
of the 35° and −35° turning circle tests require only several 
seconds, whereas the full-scale test requires 25 min. Hence, 
the simulations can present the real-time performance of the 
RM-SVM, which is crucial for a ship handling simulator. 
What is more, the accelerations predicted by RM-SVM are 
highly accurate and can be utilized when taking decisions 
in ship course and track control.

However, there are some issues which have not been 
considered in the proposed method. The first is the effect of 
ship rolls on the ship maneuvering motion, due to the fact 
that the 3-DOF model was used in this study. The second 
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issue refers to the fact that the 35° or −35° turning circle tests 
had just one free running model test result. This implies 
that the uncertainty analysis of captive and free running 
model test could not be performed; thus, there is a certain 
error. The third issue is related with the fact that the scale 
of ship model used in this paper is 45.7. The scale effects of 
CFD-SJT and EXP-NMRI were not analyzed in detail, and 
they can be a source of differences in comparison. 

CONCLUSIONS

The RM-SVM based grey box model structure and adaptive 
tuning for ship motion identification modeling is presented. 
The key technologies and skills applied are:  RM selection, 
velocity conversion using the similarity rule, and adaptive 
SVM tuning. The RM-SVM has a simple structure and 
requires shorter training and simulation times compared 
with other models. By analyzing earlier studies, we can 
find that ship modeling based on AI system identification 
is a time-consuming work, while the RM-SVM simulation 
requires less time. Illustrative examples presented in the paper 
demonstrate the generalization ability and feasibility of the 
RM-SVM approach. Furthermore, this RM-SVM scheme of 
adaptive tuning used for insensitive band in SVM has been 
proved to be effective.

In this study, three crucial results were obtained. Firstly, 
compared with the CFD and other related methods, the 
prediction accuracy of the proposed RM-SVM method is 
high. As an identification method for ship maneuvering, 
the prediction of the RM-SVM makes some progress since 
the ITTC 2008. Secondly, RM-SVM uses less data and a 
minor rudder as the identification data than other system 
identification methods, which yields greater generalization 
ability. Thirdly, RM shows the approximation ability and 
provides the base estimation for ship maneuvering.

However, RM-SVM has some inherent drawbacks. It 
neglects ship hydrodynamic coefficients, such as those in 
Abkowitz, ship module, or MMG model, and no information 
about ship flow field is provided, unlike the CFD method. 
Furthermore, the input variables for SVM are not optimal 
and need some further theory in the aspect of mechanism 
principle. For instance, the turbulence of rudder and propeller 
position cannot be precisely estimated. In this context, future 
studies should focus on ship maneuvering modeling which 
will take into consideration sea disturbances, uncertainty 
analysis, and ship roll. 
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