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ABSTRACT

The paper presents results of numerical simulations of size effect phenomenon in concrete specimens. The behaviour 
of in-plane geometrically similar notched and unnotched beams under three-point bending is investigated. In total 
18 beams are analysed. Concrete beams of four different sizes and five different notch to depth ratios are simulated. 
Two methods are applied to describe cracks. First, an elasto-plastic constitutive law with a Rankine criterion and an 
associated flow rule is defined. In order to obtain mesh independent results, an integral non-local theory is used as 
a regularisation method in the softening regime. Alternatively, cracks are described in a discrete way within Extended 
Finite Element Method (XFEM). Two softening relationships in the softening regime are studied: a bilinear and an 
exponential curve. Obtained numerical results are compared with experimental outcomes recently reported in literature. 
Calculated maximum forces (nominal strengths) are quantitatively verified against experimental values, but the force 
– displacement curves are also examined. It is shown that both approaches give results consistent with experiments. 
Moreover, both softening curves with different initial fracture energies can produce similar force-displacement curves.
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INTRODUCTION

Concrete is one of the most popular materials used in civil 
engineering to erect buildings, bridges and other structures 
on land and various port facilities like breakwaters or quays. 
Its tensile strength is several times smaller than compressive 
one, therefore it is usually applied with steel reinforcing bars. 
These bars are responsible to carry (mostly) tensile stresses, 
while the concrete itself sustains compressive stresses, and 
the tensile strength of concrete is neglected. The situation 
is different in plain or weekly reinforced massive concrete 
structures in civil or coastal engineering, like foundations, 
dams etc. The tensile strength of concrete cannot be neglected 

and the proper estimation of the concrete’s properties in 
tension is of great importance. 

One of the salient phenomenon observed in concrete 
structures is the presence of size effect. The strength (and 
other properties) of material depends on the size of a specimen 
examined; small elements have a greater nominal strength 
than bigger ones. It is caused by the existence of the so-called 
fracture process zone (FPZ), which size is not negligible 
comparing to the size of the specimen. Deformations localise 
inside these zones; at the beginning as a set of diffused micro-
cracks and later a discrete macro-crack. The observed size 
effect results are placed between plastic limit theory and linear 
elastic fracture mechanics solutions. Therefore, the proper 
theoretical capture of the size effect phenomenon is crucial 
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when experimental results from tests performed on small 
specimens are to be extrapolated into bigger ones.

Within continuum mechanics, cracks can be described 
as a smeared (continuous), discrete (discontinuous) or by 
coupling these two approaches (Mazars et al. [20], Marzec 
et al. [18], Unger et al. [26], Bobiński and Tejchman [5]). The 
first (smeared) approach defines a crack as region (band) 
with a certain width, while in the second formulation it is 
presented as a line (surface) with zero thickness and assumed 
displacement jump across. When using classical constitutive 
laws with strain softening, a mesh dependency is observed. In 
order to obtain mesh independent results and to restore the 
well-posedness of the boundary value problem, a regularisation 
method is needed. This enrichment introduces a characteristic 
length of the microstructure into the macroscopic material 
description. It can be done via a non-local theory, gradient 
terms or using viscosity in dynamic problems (Brinkgreve 
[6], Glema et al. [10], Marzec et al. [19], Wang et al. [27], 
Winnicki et al. [29]). More sophisticated formulations couple 
continuous and discontinuous descriptions (Simone et al. 
[22, 23]). Non-locality can be also introduced via fractional 
differential operators (Beda [3], Błaszczyk [4], Lazopoulos 
i Lazopoulos [17], Sumelka [24], Sumelka et al. [25]).

Despite a huge amount of performed experiments on 
concrete specimens, there is still no consensus in describing 
the fracture process in concrete. Due to several factors 
influencing the results and a small number of specimens 
tested in a single experimental programme, it is very hard to 
properly compare the obtained results and to form general 
conclusions. Therefore, some experimental campaigns were 
executed recently to overcome these limitations. Hoover 
et al. [15] examined in plane geometrically scaled unnotched 
and notched concrete beams under three-point bending. 
Four different beam sizes and five different notch to depth 
ratios were analysed. In total 18 different geometries were 
defined and more than one hundred specimens were tested. 
Çağlar and Şener [7] examined geometrically identical beams 
(80 specimens), but cast in a horizontal position. A slightly 
smaller number of beams (34 specimens) was tested by 
Grégoire et al. [12]. They analysed beams of four different 
sizes and three different notch to depth ratios (unnotched 
and notched).

Different constitutive laws were used later to reproduce 
obtained experimental results. Hoover and Bažant [16] used 
the crack band and a bilinear softening law. They stated that 
an exponential softening curve was not able to give realistic 
results. Grégoire et al. [12] applied the isotropic damage 
constitutive law coupled with the integral non-local theory 
and an exponential curve defined in softening. A similar 
model was used in numerical simulations presented by 
Havlásek et al. [13]. In addition, they studied standard and 
distance based averaging methods in non-locality.

In the paper, numerical simulations of size effect in plain 
concrete beams under bending are presented. Two alternative 
crack descriptions are used: a smeared one via an elasto-
plastic with a Rankine criterion enriched by a non-local 
theory in the softening regime and a discrete one within 

XFEM. The influence of defined softening curve and assumed 
value of the initial fracture energy in both approaches on the 
obtained results is investigated. Such vast analysis with two 
different crack descriptions and two different softening curves 
has not been performed yet. In addition, the deficiencies of 
the initial fracture energy are pointed out. Numerical results 
are compared with experimental outcomes. 

The paper is organised as follows. The constitutive models 
are described in Section 2. The problem data are given in 
Section 3. Obtained results and discussion are presented 
in Section 4. Conclusions and final remarks are listed 
in Section 5.

CONSTITUTIVE LAWS

ELASTO-PLASTICITY

As a first option, a smeared description of cracks in 
concrete is used. An elasto-plastic constitutive law with the 
classical Rankine criterion is proposed. The yield criterion 
in 2D is postulated as

{ } ( )Ctf κσσσ −= 21,max (1)

where:
σ1, σ2 – the principal stresses,
σt – the tensile yield stress,
κC – the softening state variable.

The tensile yield stress σt is defined in Sec. 2.3 and the state 
variable κC is equal to the maximum principal plastic strain. 
Plastic strains are calculated assuming an associated flow rule. 

When defining strain softening with the standard 
constitutive laws, classical finite element calculations fail. 
Obtained result are mesh dependent and a regularisation 
method is required to restore the well posedness of the 
boundary value problem. Here, an integral non-local theory 
is applied. Non-local rates of state variables dκC are evaluated 
as (after Brinkgreve [6]) 

( ) ( ) ( ) ( )xxx CCC mm κκκ ˆdd1d +−= (2)

where:
x – point under consideration,
m – non-locality parameter,

Cκ̂d – rate of averaged state variable.
The non-locality parameter m should be greater than 1 to 

effectively apply the non-local theory with elasto-plasticity 
(so called over-non-local formulation). The rate of averaged 
state variable is calculated as: 
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where:
V – volume of the integration domain,
ξ – surrounding point coordinates,
ω – the weighting function.

The weighting function reflects the influence of the 
surrounding points on the material’s behaviour in the 
considered point x. Here a Gauss distribution is applied: 
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where: 
r – the distance between points,
l – the characteristic length.

The characteristic length is the link with the micro-
structure of the material. The characteristic length l (but 
also the non-locality parameter m, the definition of the 
weight function ω and the formulation of the constitutive 
law) influences the width of the localisation zone, which in 
general depends on concrete mesostructure. The averaging 
in Eqn. (4) is restricted only to a small neighbourhood around 
a point considered (the influence of points at the distance 
of r=3l is only of 0.01%). Therefore, although the weight 
function ω defined in Eqn (4) has unbounded support, only 
points at the distance no larger than r=3l from the integration 
domain V. For points x lying close to the boundary, only 
points lying within a circle with a radius r=3l and belonging 
to the specimen are taken into account (see Fig. 1a). In both 
cases, the denominator in Eqn (3) normalises the averaging 
operation; the uniform local field remains unchanged after 
applying the Eqn (3). Near notches so called “shading effect” 
is taken into account (Fig. 1b).

EXTENDED FINITE ELEMENT METHOD

As an alternative approach, cracks can be described as 
displacement jumps within continuum. In the paper eXtended 
Finite Element Method (XFEM) is utilised. It is based on 
a local partition of the unity (PUM) concept by (Melenk 
and Babuška [21]). It enables adding ‘ad hoc’ extra terms to 
a standard FE displacement field interpolation to capture 
displacement jumps across a crack. As a consequence, cracks 
can be placed through elements; they do not have to follow 
elements’ edges.

In the paper the formulation (with minor improvements 
and modifications) proposed by Wells and Sluys [28] for 
cohesive cracks is adopted. The only major change is the 
application of the so-called shifted-basis enrichment proposed 
by Zi and Belytschko [30]. Theoretically, this improvement 
is equivalent to the classical model, but it simplifies the 

implementation (only two types of finite elements exist and 
total nodal displacements are equal to the standard ones).

Fig. 1. Averaging domain (grey area) for a point near boundary (a) 
and close to a notch (b)

Two constitutive relationships have to be declared to 
describe the behaviour of the material. Outside a crack in 
a solid (bulk) body a linear elasticity law is assumed. Along 
the crack a constitutive law between displacement jumps 
[[u]] and tractions t is postulated. The following loading 
function is assumed: 

(5)

where:
[[un]] – normal component of [[u]], 
κD – the softening state variable.

The state variable κD is calculated as a maximum crack 
opening [[un]] attained during the load history. In active 
loading (growth of the crack opening) the normal traction 
tn is equal to the yield traction ty defined as: 

tfy Dt σ= (6)

where:
Df – correction term,
σt – the yield stress defined in Sec. 2.3.

The correction term Df improves the performance of the 
model in tension-compression transition cases. It is defined as: 
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where: 
df – the drop factor (Cox [8]),
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ft – the tensile strength,
GF – the total fracture energy.

In unloading/reloading a return to the origin (damage 
formulation) is assumed: 

(8)

In compression a penalty stiffness is taken. It is calculated as: 

F

tf
n G

fd
T

2

= (9)

In tangential direction, a linear dependence between 
shear tractions ts and tangential displacement jump [[us]] 
is assumed:

(10)

where: 
Ts – the initial shear stiffness.

SOFTENING CURVES

In both smeared and discrete crack descriptions two 
softening curves are used in the numerical simulations. In 
the present section, symbol κ should be taken either as the 
state variable κC or as the state variable κD. First, a bilinear 
relationship is taken (Fig. 2a):

Fig. 2. Bilinear (a) and exponential (b) softening curves (grey area – initial 
fracture energy)
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where: 
σk – the yield stress at the kink point,
κk – the state variable at the kink point,
κu – the state variable at zero stress.

Alternatively, an exponential definition is used (Fig. 2b): 
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where: 
κu – controls the slope of the curve.

More advanced exponential relationship was proposed by 
Hordijk ([14]) based on experimental outcomes.

In eXtended Finite Element Method, state variables κk (only 
for bilinear softening) and κu can be directly related to the 
initial fracture energy Gf and the total fracture energy GF. The 
initial fracture energy Gf (Bažant [1]) is the area under the 
initial tangent line from the peak at the stress – displacement 
curve (grey regions in Fig. 2), while the total fracture energy 
GF is the area under the whole curve. In bilinear softening 
these parameters can be derived as:
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while in exponential softening: 

t

F
u f

G
=κ (15)

PROBLEM

In the paper the experiment performed by Hoover et al. [15] 
is numerically simulated. They examined 128 unnotched and 
notched plain concrete beams under three-point bending. 
Figure 3 presents the geometry of a beam. Four different 
beam sizes were tested with height (depth) D taken as 500, 
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215, 93 and 40 mm, labelled here as a huge, large, medium 
and small specimen, respectively. The length to depth ratio 
was kept constant and it was equal to 2.4 for all beams and 
the span length L was defined as 2.176D. Five different notch 
to depth ratios α0 were assumed: 0.0 (no notch), 0.025, 0.075, 
0.15 and 0.30. In total 18 different geometries were defined 
(small and medium beams with the ratio α0=0.025 were not 
cast). The thickness of all beams was B=40 mm and the width 
of the notch was equal to 1.5 mm for all specimens. 

Fig. 3. Boundary conditions and geometry of a beam

A load was imposed in the middle of the top edge of the 
specimen. Steel plates were placed at supports and under the 
load. A hard (rigid) contact was assumed between concrete 
and steel plates at the supports and under the load. All tests 
were executed under crack mouth opening displacement 
control by increasing the distance between two chosen points 
at the bottom edge symmetrically with the respect to vertical 
axis of symmetry. The initial distance between these two 
points depended on the beam size D and the ratio α0 (it was 
between 12.7 and 162 mm). 

FE-CALCULATIONS

INPUT DATA

Numerical simulations are performed in Abaqus 
Standard programme. The total elongation of the gauge 
is set to ∆=0.3 mm and an indirect displacement method 
is used. At least 250 increments are required to complete 
a simulation. Plane stress conditions are assumed with 
3-node constant strain triangular finite elements. In elasto-
plasticity an approximated method is used in calculations 
of averaged quantities. In an integration point the influence 
of the neighbour points is determined with values from the 
previous iteration. The refined FE mesh along the vertical axis 
of symmetry is defined in all specimens with the maximum 
element size not greater than 1 mm for calculations with 
elasto-plasticity and 2 mm for XFEM simulations. The total 
number of finite elements varies between 6967 and 55251 
and between 4981 and 11660 in calculations with smeared 
and discrete cracks, respectively. A denser FE-mesh for 
calculations with elasto-plasticity ensures the effective 

application of the non-local theory ever for small values of 
the characteristic lengths and obtaining mesh independent 
results. Some comparative simulations with XFEM have 
shown that identical results have been received using coarser 
and denser meshes. An exemplary FE-mesh used in XFEM 
calculations in the region around the notch for the medium 
beam and the notch to depth ratio α0=0.15 is shown in Fig. 4. 

Fig. 4. Exemplary FE mesh around the notch

In the simulations the Young’s modulus is assumed as 
E=41.25 GPa and the Poisson’s ratio is v=0.172 (taken from 
experiments by Hoover et al. [15]). The total fracture energy 
is set to GF=70 N/m (after Hoover and Bažant [16]). In bilinear 
softening the yield stress at the kink point is always defined 
as σk=0.15ft. In XFEM the drop factor is equal to df=104 and 
the shear stiffness is Ts=0.0 N/m3. Material for steel plates is 
taken as a linear elastic with the Young’s modulus Es=200 GPa 
and the Poisson’s ratio vs=0.3.

RESULT AND ERROR MEASURES

The experimental nominal (ligament) strength exp
Nσ  is 

calculated as:

expexp

exp
exp 176.2

2
3

DB
Pu

N =σ (16)

where: 
exp

uP  – the experimental max. force,
Bexp – the experimental thickness,
Dexp – the experimental height.

The numerical nominal strength FEM
Nσ  is defined as: 
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u
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where: 
FEM

uP  – the numerical max. force,
Cf – the correction factor.
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The correction factor takes into account deviations of real 
dimensions with the respect to nominal ones. It is defined as: 

exp

exp

176.23
2

u

N
f P

BDC  (18)

In order to rate a simulation quality, the following relative 
error Err0 is introduced:

(19)

The whole set is evaluated using errors Err1 and Err2:
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where: 
N – the number of beams (N=18).

In statistics, the errors Err1 and Err2 are called the mean 
percentage error (MPE) and the mean absolute percentage 
error (MAPE), respectively. The presence of the negative error 
values allows for distinguish between underestimated and 
overestimated numerical results.

RESULTS WITH XFEM

First, simulations with bilinear softening curve are executed. 
In order to find the values of the tensile strength ft and the 
initial fracture energy Gf, seed calculations are performed. 
The tensile strength ft changes between 3.6 MPa and 5.6 MPa 
with an increment 0.4 MPa. The initial fracture energy Gf 
varies between 30 N/m and 54 N/m with an increment 2 N/m. 
Obtained error Err1 and Err2 isolines are depicted at Fig. 5. 
It can be seen that for both measures the best ft and Gf pairs 
form an inclined line (or region), but they do not indicate 
a single optimum point. Please note, however, that not only 
peak values, but also agreement between whole numerical and 
experimental curves has to be taken into account. Finally, the 
tensile strength is set to ft=5.0 MPa and the initial fracture 
energy is taken as Gf=48 N/m. With these values the following 
errors are obtained: Err1=0.67% and Err2=2.69%. Figure 6a 
presents a comparison between nominal strength obtained in 
the experiment and FE-calculations. Generally, a very good 
agreement can be observed. The largest deviation (the error 
Err0=10.7%) is for the small beam (D=40 mm) and the notch 
to depth ratio α0=0.3. Whole force – displacement curves 
are presented in Fig. 7. It can be seen that numerical results 
fit nicely into experimental ranges (grey regions). This fact 
confirms the proper assumption of the total fracture energy 
GF=70 N/m.

Fig. 5. Error contour maps for seed calculations with XFEM: Err1 (a) 
and Err2  b) (in percentages)

The performance of the exponential softening curve 
with the following parameters: ft=4.8 MPa and Gf=35 N/m 
is studied also (values based on some initial calculations). In 
the case of the exponential softening, there is no possibility 
to control independently both: initial Gf and total GF fracture 
energies. The initial fracture energy Gf is always equal to 
50% of the total fracture energy GF. FE-calculations with 
above parameters produce the following errors: Err1=0.20% 
and Err2=3.65%, comparable to values obtained with the 
bilinear softening. Here the worst specimen is the huge beam 
(D=500 mm) and the notch to depth ratio α0=0.3; it gives 
the error Err0=8.9%. Comparison between experimental 
and numerical nominal strength is done in Fig. 6b. Again, 
a good agreement is achieved (here some differences occur 
also for unnotched beams). 
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Fig. 6. Nominal (XFEM calculations) and experimental strengths with the bilinear softening curve, ft=5.0 MPa and Gf=48 N/m (a)  
and the exponential softening, ft=4.8 MPa and Gf=35 N/m (b)

Fig. 7. Experimental and numerical (XFEM calculations) force – crack mouth opening displacement (CMOD) curves for bilinear softening,  
ft=5.0 MPa and Gf=48 N/m
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RESULTS WITH ELASTO-PLASTICITY

Next the numerical simulations are repeated with the 
elasto-plastic constitutive law with a Rankine criterion. Two 
characteristic lengths are assumed: l=5 mm and l=2 mm. The 
values of κu (for both softening curve definitions) are chosen 
in such a way to obtain the identical force-displacement 
curves with XFEM and elasto-plastic model with any 
of two characteristic lengths analysed. In calculations 
with the bilinear softening the ultimate value of the state 
variable is taken as κu=4.05·10-3 and κu=10.13·10-3 for the 
characteristic length l=5 mm and l=2 mm, respectively 
(to obtain initial fracture energy Gf=48 N/m). The 
tensile strength is ft=5.0 MPa (as in XFEM calculations). 
Simulations give the following errors: Err1=Err2=9.76% for 
the characteristic length l=5 mm and Err1=Err2=6.80% 
for the characteristic length l=2 mm. Comparison between 
numerical and experimental nominal strengths is made in  
Fig.  8. In general, both parameter sets overestimate 
experimental outcomes. The worst specimen returns errors 
Err0=28.1% and Err0=19.2% (the small beam with α0=0.3). 
Fortunately, the overestimation reduces with decreasing the 
characteristic length. It suggests the smaller values should 
be assumed in simulations. 

Fig. 8. Nominal (elasto-plasticity calculations) and experimental 
strengths with the bilinear softening curve, ft=5.0 MPa, Gf=48 N/m 

and the characteristic length l=5 mm (a) and l=2 mm (b)

Slightly better results are obtained from simulations with 
the exponential softening law. Here the ultimate value of 
the softening parameter is assumed as κu=0.758·10-3 and 
κu=1.894·10-3 for the characteristic length l=5 mm and l=2 mm, 
respectively (to obtain initial fracture energy Gf=35 N/m). The 
tensile strength is ft=4.8 MPa (as in XFEM calculations). The 
following errors are returned: Err1=4.91% and Err2=6.82% 
for the characteristic length l=5 mm and Err1=2.43% and 
Err2=4.16% for the characteristic length l=2 mm. Again, in 
general too high peak loads are obtained in calculations, 
although last errors Err2 is already comparable with error 
values produced in XFEM simulations. Figure 9 presents 
a comparison between numerical and experimental nominal 
strengths, while force – CMOD curves are shown in Fig. 10. 
Despite the overestimation of peak loads, numerical curves 
fit into experimental limits.

Fig. 9. Nominal (elasto-plasticity calculations) and experimental 
strengths with the exponential softening curve, ft=4.8 MPa, Gf=35 N/m 

and the characteristic length l=5 mm (a) and l=2 mm (b)
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Fig. 10. Experimental and numerical (elasto-plasticity calculations) force – crack mouth opening displacement  (CMOD) curves for exponential softening, 
ft=4.8 MPa and Gf=35 N/m

CONCLUSIONS

In the paper the size effect phenomenon in plane concrete 
beams under bending has been investigated. The numerical 
calculations using smeared and discrete methods describing 
cracks in concrete have been executed. Obtained results have 
been compared with experimental outcomes. Both approaches 
gave results consistent with experiments, although smaller 
errors have been attained with XFEM. In elasto-plasticity, 
simulations with smaller values of the characteristic length 
have returned better results (smaller errors have been 
obtained). Both softening curves have produced comparable 

results, assuming different initial fracture energies. This 
observation points some problems in unique identification 
of the initial fracture energy, when different curve definitions 
in softening are used. When assuming a curved softening 
relationship (e.g. exponential one) purely geometrical 
definition of the initial fracture energy is not sufficient and 
the curvature of the curve in the domain after the peak should 
be taken into account.  

The ongoing research is focused on improving the 
agreement of numerical results obtained with elasto-plastic 
constitutive law with experimental curves. More advanced, 
anisotropic averaging schemes in non-locality proposed 
by Giry et al. [9] and Grassl et al. [11] are investigated. 
The consequences of decreasing the fracture energy in the 
boundary layer (Bažant et al. [2]) are also examined.



POLISH MARITIME RESEARCH, No 2/2019124

ACKNOWLEDGEMENTS

Calculations were carried out at the Academic Computer 
Centre in Gdańsk.

BIBLIOGRAPHY

1.	 Bažant Z.P.: Concrete fracture modelling: testing and 
practice. Engineering Fracture Mechanics 2002; 69:165-206.

2.	 Bažant Z.P., Le J.-L., Hoover C.G.: Nonlocal boundary layer 
(NBL) model: overcoming boundary condition problems 
in strength statistics and fracture analysis of quasibrittle 
materials. Proceedings of the 7th International Conference 
on Fracture Mechanics of Concrete and Concrete Structures 
2010; 135–143.

3.	 Beda P.B.: Dynamical Systems Approach of Internal Length 
in Fractional Calculus. Engineering Transactions 2017, 
65:209-215.

4.	 Błaszczyk T.: Analytical and numerical solution of the 
fractional Euler–Bernoulli beam equation. Journal of 
Mechanics of Materials and Structures 2017; 12:23:34.

5.	 Bobiński J., Tejchman J.. A coupled constitutive model for 
fracture in plain concrete based on continuum theory with 
non-local softening and eXtended Finite Element Method. 
Finite Elements in Analysis and Design 2016; 114:1-21.

6.	 Brinkgreve R.B.J.: Geomaterial models and numerical 
analysis of softening. PhD Thesis, TU Delft 1994.

7.	 Çağlar Y., Şener S.: Size effect tests of different notch 
depth specimens with support rotation measurements. 
Engineering Fracture Mechanics 2016; 157:43–55.

8.	 Cox J.V.: An extended finite element method with analytical 
enrichment for cohesive crack modelling. International 
Journal for Numerical Methods in Engineering 2009; 
78:48-83.

9.	 Giry C., Dufour F., Mazars J.: Stress-based nonlocal damage 
model. International Journal of Solids and Structures 2011; 
48:3431–3443.

10.	Glema A., Łodygowski T., Perzyna P.: Interaction of 
deformation waves and localization phenomena in inelastic 
solids. Computer Methods in Applied Mechanics and 
Engineering 2000; 183:123-140.

11.	Grassl P., Xenos D., Jirásek M., Horák M.: Evaluation of 
nonlocal approaches for modelling fracture near nonconvex 
boundaries. International Journal of Solids and Structures 
2014; 51:3239–3251.

12.	Grégoire D., Rojas-Solano L., Pijaudier-Cabot G.: Failure 
and size effect for notched and unnotched concrete beams. 
International Journal for Numerical and Analytical 
Methods in Geomechanics 2013; 37:1434–1452.

13.	Havlásek P., Grassl P., Jirásek M.: Analysis of size effect 
on strength of quasi-brittle materials using integral-type 
nonlocal models. Engineering Fracture Mechanics 2016; 
157:72–85.

14.	Hordijk D.A.: Local approach to fatigue of concrete. PhD 
Thesis, TU Delft 1991.

15.	Hoover C.G., Bažant Z.P., Vorel J., Wendner R., Hubler 
M.H.: Comprehensive concrete fracture tests: Description 
and results. Engineering Fracture Mechanics 2013; 
114:92–103.

16.	Hoover C.G., Bažant Z.P.: Cohesive crack, size effect, 
crack band and work-of-fracture models compared to 
comprehensive concrete fracture tests. International Journal 
of Fracture 2014; 187:133–143.

17.	 Lazopoulos K.A., Lazopoulos A.K.: Fractional vector 
calculus and fluid mechanics. Journal of the Mechanical 
Behavior of Materials 2017; 26:43-54.

18.	Marzec I., Skarżyński Ł., Bobiński J., Tejchman J.: Modelling 
reinforced concrete beams under mixed shear-tension failure 
with different continuous FE approaches. Computers and 
Concrete 2013; 12:585-612.

19.	Marzec I., Tejchman J., Winnicki A.: Computational 
simulations of concrete behaviour under dynamic conditions 
using elasto-visco-plastic model with non-local softening. 
Computers and Concrete 2015; 15(4):515-545.

20.	Mazars J., Hamon F., Grange S.: A new 3d damage model 
for concrete under monotonic, cyclic and dynamic load. 
Materials and Structures 2015; 48:3779–3793.

21.	Melenk J.M., Babuška I.: The partition of unity finite element 
method: basic theory and applications. Computer Methods 
in Applied Mechanics and Engineering 1996; 139:289-314.

22.	Simone A., Wells G.N., Sluys L.J.: From continuous to 
discontinuous failure in a gradient-enhanced continuum 
damage model. Computer Methods in Applied Mechanics 
and Engineering 2003; 192:4581-4607.

23.	Simone A., Sluys L.J.: The use of displacement discontinuities 
in a rate-dependent medium. Computer Methods in Applied 
Mechanics and Engineering 2004; 193:3015-3033.

24.	Sumelka W.: Non-local Kirchhoff–Love plates in terms 
of fractional calculus. Archives of Civil and Mechanical 
Engineering 2015; 15:231-242.



POLISH MARITIME RESEARCH, No 2/2019 125

25.	Sumelka W., Błaszczyk T., Liebold C.: Fractional Euler–
Bernoulli beams: Theory, numerical study and experimental 
validation. European Journal of Mechanics - A/Solids 2015; 
54:243-251.

26.	Unger J.F., Eckardt S., Könke C.: Modelling of cohesive 
crack growth in concrete structures with the extended finite 
element method. Computer Methods in Applied Mechanics 
and Engineering 2007; 196:4087–4100.

27.	Wang W.M., Sluys L.J., de Borst R.: Viscoplasticity 
for instabilities due to strain softening and strain-rate 
softening. International Journal for Numerical Methods 
in Engineering 1997; 40:3839-3864.

28.	Wells G.N., Sluys L.J.: A new method for modelling cohesive 
cracks using finite elements. International Journal for 
Numerical Methods in Engineering  2001; 50:2667-2682.

29.	Winnicki A., Pearce C.J., Bićanić N.: Viscoplastic Hoffman 
consistency model for concrete. Computers & Structures 
2001; 79:7-19.

30.	Zi G., Belytschko T.: New crack-tip elements for XFEM and 
applications to cohesive cracks. International Journal for 
Numerical Methods in Engineering 2003; 57:2221-2240.

CONTACT WITH THE AUTHORS

Ireneusz Marzec
e-mail: irek@pg.edu.pl

Gdansk University of Technology
Narutowicza 11/12, 80-233 Gdańsk

Poland

Jerzy Bobiński
e-mail: bobin@pg.edu.pl

Gdansk University of Technology
Narutowicza 11/12, 80-233 Gdańsk

Poland


