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ABSTRACT

The paper refers to the dynamic short-term response analysis of the Baltic steel drilling platform (see Fig.2) in a random 
sea-state represented by one-dimensional wave spectrum proposed by Striekalov and Massel, which is recommended 
for the Baltic Sea area. The Baltic drilling platform is a jack-up type platform for the exploration and exploitation of oil 
under the Baltic Sea. The presented analysis deals with the stationary phase of the platform life when its legs are fixed 
in the sea bottom. The submerged elements of jack-up platforms are relatively slender, thus to assess the in-line wave 
forces a modified Morison equation is justified. The application of frequency transfer functions to offshore vibration 
systems leads to structural response spectra whose input is defined by the wave elevation and wind velocity spectra. 
The analysis can be applied also to support structures for offshore wind turbines.
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INTRODUCTION

Offshore platforms are structural engineering systems designed 
and erected to withstand severe sea conditions including dynamic 
wave and wind loads. The paper follows the research of [4] and 
deals with dynamic analysis of a Baltic movable jack-up drilling 
platform. Stationary work phase of a jack-up platform assumes its 
fixed supporting in the seabed. The soil subsystem interacts both 
ways with the structure through the foundation, therefore a soil-
structure interaction problem is analysed here. The analytical 
method is aimed at computing frequency transfer functions 
linked with the input wave elevation and wind fluctuation 
velocity spectra (see Fig. 7 and Fig. 8) in order to obtain structural 
response spectra. This concept of analyzing the offshore structural 
engineering systems assumes linearized relations between 
structural input and output. A general computational procedure 
aimed at response spectra (nodal displacements, cross-sectional 
forces, stresses) is presented in Fig. 6, Appendix 1. 

The model of a jack-up platform assumes its support by 
submerged cylindrical members (see Fig. 2), too slender to 
significantly alter the incident wave field, thus application of the 

modified Morison equation is justified. The equation defines the 
wave force normal to the cylinder axis, collinear with the wave 
propagation direction. In a probabilistic approach the Morison 
function is affected by Gaussian wave particle kinematics [1].

In the case of slender cylindrical members subjected to 
sea waves action the wave-structure interaction problem is 
inherently nonlinear as shown in Fig. 1. The following relations 
hold: H/D>1, D/L>0.2 where H is the wave height, L is the wave 
length, D is the cylinder diameter (potential theory is applied, 
no diffractions effects). 

Fig. 1. Scheme of wave-structure interaction problem
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The modified Morison equation (this version includes the 
relative wave kinematics due to moving cylinder), cf. [2], [3], 
[4]) reads:

       (1)

Here dF(s, t) is the differential wave force normal to the axis 
of the cylinder of the diameter D, co-linear with the direction 
of wave propagation on a length ds, s denotes the variable 
along the element length, ρ is the density of water, vn(s, t) is 
the water particle velocity in the undisturbed wave process, 
subscript “n” denotes normal to the cylinder axis, C Mʹ , CʹʹM , 
CD are empirical coefficients affected by the cross-sectional 
shapes, Reynolds and Keulegan-Carpenter Numbers and 
relative roughness ([5], 12]), q(s, t) is the cylinder response 
(displacement), ∂(•)/∂t denotes the partial time derivative.

ASSUMPTIONS AND SOLUTION 
TECHNIQUES

The following assumptions with regard to two cases of 
the stochastic approach to the problem presented in Fig. 1, 
are considered:
I. Linear stochastic problem:

• � deterministic soil-structure interaction which is 
represented by a  system of springs and dash-pots 
connecting the legs of the structure and subsoil. The 
number of these connecting elements depends on the 
subsoil penetration depth of the structure leg ends,

• � linearization of the velocity term in Eq. (1) is carried 
out by means of the least-square technique or stochastic 
averaging method (cf. [8], [10]),

• � wave and wind loads are considered stationary Gaussian 
zero-mean ergodic processes, mutually independent, 

• � the equations of motion of the problem are solved in 
a reduced modal space.

II. Non-linear stochastic problem:
• � non-deterministic soil-structure interaction problem is 

considered where the soil shear modulus G is a Gaussian 
random variable,

• � the spring stiffnesses are linear functions of G, whereas 
the dash-pots are non-linear functions, it eventually 
yields non-Gaussian random variables [6],

• � no vortex- induced oscillations are included in the 
analysis.

In the presented paper the following solution techniques 
are applied:
1. Modal transformation of the equation of motion:

M (t) + C (t) + Kq(t) = P(t, (t), (t))       (2)

where M, C, K are the overall mass, damping and stiffness 
matrices n×n, respectively, q(t) and P(t, (t), (t)) are 
the global displacement and applied force vectors n×1,  
M = MK + MS + MH , C = CK + CS + C

R
H  , K = KK + KS , where 

MK , CK , KK are the structural parts of matrices MS , CS , KS, 
show the soil impact MH, CR

H denote hydrodynamic parts of 
matrices, an upper dot P(t, (t), (t)) denotes a time derivative, 
is the force vector due to hydrodynamic and wind loads:

P(t, (t), (t)) = F(t, (t), (t))+W(t, (t))      (3)

where: F and W are referred to wave and wind force vectors, 
respectively.

The eigenvalue problem is formulated by KΦi=λi MΦi , where 
λi=ω2

0i is the i-th eigenvalue (squared natural frequency), Φi is the 
i-th eigenvector, (ω01, Φ1), (ω02, Φ2),…, (ω0n, Φn ) is the eigensolution 
with the orthogonality relation ΦT

i  MΦj=[δij] = I, where δij is the 
Kronecker delta, i, j = 1, 2…, n, is the n×n unit matrii.

Let Φh=[Φ1, Φ2,… Φh], h ≤ n constitutes the reduction of the 
modal space and ΦT

h MΦh=Ih , Φ
T

h KΦh=Ω2
h =diag{ω2

01, ω
2
02…

ω2
0h} where Ih is the h×h unit matrix.

2. Stochastic linearization method [7]:
The nonlinear (velocity) part of the Morison Eq. (1) is:

X( | |) = (vn(s, t) – n (s, t))|vn (s, t) – n (s, t)|    (4)

This term may be linearized with a tendency to minimize 
the mean-square error:
X( | |)→A , where e = X( | |)A – and 

    (5)

The condition (5) gives the result:

    (6)

The last term of the Morison equation (1) denotes the drag 
force. In view of the approximation (6) one gets the force 
equivalent to the drag force ([6], [8]) , given by:

    (7)

where: σvn–  n is a standard deviation of the relative velocity 
(assumed that σvn–  n ≈ σvn if the condition |vn(s, t)|>>|qn(s, t)| 
is satisfied).

Fig. 2. General view of the platform
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3. The perturbation method (cf [6], [9]):
Let the total mass, damping and stiffness matrices in Eq. (2) 

take the form:

M = M0+ εM1(γ), C = C0+ εC1(γ), K = K0+ εK1(γ),

q(γ, t) = q0(γ, t) + εq1 (γ, t)            (8)

where: ε is the small parameter |ε|<<1, γ is an elementary 
event.

It yields the following set of equations:

M0 0(γ, t) + C0 0(γ, t) + K0q0(γ, t) = P(γ, t)

M0 1(γ, t) + C0 1(γ, t) + K0q1(γ, t) =

–[M1(γ) 0(γ, t) + C1(γ) 0(γ, t) + K1(γ)q0(γ, t)]=

Z(γ, t)                        (9)

where M1(γ)  =  diag[MSii(γ)], C1(γ)  =  diag[CSii(γ)], 
K1(γ) = diag[KSii(γ)]define diagonal elements of the mass, 
damping and stiffness matrices due to soil, Z(γ, t) is the vector 
of stochastic stationary process in the wide sense, ergodic in the 
mean but not in the correlation. The above given expressions 
are linear stochastic equations with deterministic parameters 
and stochastic excitations.
4. The stochastic averaging method:

A diffusion Markov vector process with stationary solution 
of the Itộ stochastic differential equations with respect to 
the Wiener process (with orthogonal increments) is applied 
– cf. [8], [10]). 

By transforming Eq. (2) into reduced modal space, the i-th 
equation of motion may be written as follows:

i(t) + ω2
0 i  yi(t) = εNi [ i (t), vn (t), t]        (10)

where: Ni is the i-th element of the vector Nh=Rh–βR
h  h–βF

h  h,  
i = 1, 2,…, h ≤ n, ε is the small parameter, Rh = ΦT

h[KM n+ 
KD T1(vn)], βR

h = ΦT
h (CK+ CR

H ) Φh, β
F
h = ΦT

h [2K DT2(vn)] Φh

KM = ρCMV, CM = C Mʹ+ CʹʹM , KD = 1/2 CDA, V and A denote 
diagonal matrices of the volume and area of the submerged 
elements normal to the wave particle velocity.

Applying the Krylov – Bogolubov transformation of the 
joint response process (yi , i) to a pair of slowly varying 
processesone (Ai , ϕi) gets:

yi (t) = Ai (t) cos Θi (t),

i (t) = Ai (t) ωsin Θi (t)              (11)

where: Ai(t) is the amplitude envelope process and Θi(t) =  
ω0it + φi(t), φi(t) indicates the phase process, provided that the 
condition i(t) = i(t)Ai(t)sinΘi(t)/cosΘi(t) is satisfied. 

By substituting Eqs (11) into (10), the standard equations are:

i(t) = εGi[A, φ, vn(t), t]

i(t) = εZi[A, φ, vn(t), t]              (12)
where:

In the above given expressions GRi and ZRi, GFi and 
ZFi represent the regular and fluctuation parts of the 
corresponding functions, respectively.

The amplitudes Ai and phases φi are considered elements of 
a multi-dimensional function X(t)=[Ai(t), φi(t),…, Ah(t), φh(t)]

T. 
It can be proved that the response of the Eq. (10) tends 

to a multi-dimensional diffusive Markov process if the 
conditions of the Khasminski limit theorem ([20]) are 
satisfied. The Itộ stochastic differential equation is one 
of the methods for the analysis of Markov processes. 
In the case of a vector process X(t) it holds:

dX(t) = m[X(t)]dt + σ[X(t)]dW(t)        (13)

where m[X(t)] is a drift coefficient, σ[X(t)] a diffusion coefficient 
matrix, W(t) denotes the Wiener process (representing an 
independent Brownian motion process). 

It can be proved that the equations for amplitudes are 
uncoupled from ones referring to phases (cf. [8], [19]). The 
set of Itộ equations (13) takes the form:

    (14)

    (15)

where Wj
A, Wj

φ are independent Wiener processes, mi
A, mi

φ 
and σij

A, σij
φ are drift and diffusion coefficients, respectively, 

i = 1, 2,…,h.
The details related to the Khasminski limit theorem are 

fully developed in [8].
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STRUCTURAL TRANSFER FUNCTION

This function can be derived directly from the dynamic 
equilibrium Eq.(2).

The force vector depends on structural kinematics, in 
this form the vector generates the nonlinear damping term 
in Eq. (1). For the linear case the equation can be written in 
frequency domain:

    (16)

where the following transformations are defined: 

    (17)

The equation (16) can be stated in the form:

    (18)

in which HQP(ω) = (K– ω2 M + iωC)–1 is the structural transfer 
function matrix (n×n).

In the reduced modal space Q→Y, the function HQP(ω) 
takes an approximate form:

    (19)

where: 

kr is the generalized stiffness, ω0r , ξr are the r-th natural 
frequency and the damping ratio, respectively, h ≤ n denotes 
the number of modes Φh in the reduced space.

WAVE TRANSFER FUNCTION

In the case o fsufficiently slender elements loaded by sea 
waves the Morison equation is applicable, it can be written 
in vector notation:

F(t) = f (β)[KM n(t) + KDvn(t)]        (20)

where n= an, is the acceleration vector, 

σvn is a standard deviation of horizontal velocity of water in the 
wave direction, f (β) is a function of wave direction flow angle.

The force (20) can be stated in the frequency domain:

F(ω) = HFη(ω) η(ω)                (21)

where: η(ω) denotes water elevation considered the input 
function, HFη(ω) is the transfer function of the wave force 
(cf. [11]) according to the Morison equation:

HFη(ω) = f (β)[KM+ iωKD] Hvη(ω)        (22)

in which Hvη(ω) is the transfer function vector between the 
normal water velocity and the water elevation.

The transfer function vector of the wave force given by 
Eq. (22) is defined in global coordinates for an entire structure 
after an assembly process of transfer functions of member 
forces. Given a particular element “e” whose length is le the 
wave force shows exponential distribution in vertical direction 
and harmonic in horizontal direction. The transfer functions 
of equivalent wave forces at member ends are calculated by 
assuming cubic polynomial functions to approximate member 
deformations ([12]). These transfer functions are given the 
following vector notation with respect to a member “e”:

    (23)

where: Ne describes shape function matrix of member 
deformations, le is the member length, x denotes a variable 
along the member axis, the superscript L indicates local 
coordinates. While an assembled system is considered this 
vector is transformed to global coordinates according to 
standard finite elements method (FEM) procedures.

RESPONSE SPECTRA

The response displacement spectral density function can 
be presented in the form:

    (24)

where: YP is given by Eq. (19), 

Here SFF(ω) and SWW(ω) correspond to waves and wind 
spectra, respectively.

The cross-spectral density of the wave load is:

    (25)

in which “m” and “n” are points of the structure with their 
global coordinates {xm, ym, zm} and {xn, yn, zn}, respectively, Dm 
and Dn denote diameters of structural submerged members 
at these points,
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    (26)

D(k, zm, zn) = A(k, zm) AT(k, zn)        (27)

    (28)

    (29)

where: Sηη (ω) in Eq. (26) denotes water elevation spectrum 
(e.g. the Massel-Striekalov spectrum [13], see Appendix 2, 
Fig. 4), k stands for the wave number, k = 2π/Lw, where Lw is 
the wave length, d is the water depth, β is long-crested – wave 
direction flow angle, ∆x = xm– xn, ∆y = ym– yn. 

The cross-spectral density of the wind load can be written 
as follows: 

    (30)

where: ρA is the air density, CDAm, CDAn, Am, An, | m|, | n|, σvʹnvʹn 
and σvʹmvʹm are the wind drag coefficients,windward areas, 
mean velocities, standard deviations at the points “m” and 
“n”lying in the vertical plane perpendicular to the mean-wind 
velocity, respectively, Svʹmvʹn is the cross-spectral density of 
the along-wind fluctuating velocity for the mentioned points:

    (31)

where : 

 is the mean speed at the reference height, βmn is the angle 
between the direction (m, n) and the horizontal, rmn is the 
distance between the points m and n, a, b, c are empirical 
coefficients, Sv mʹv mʹ and Sv nʹv nʹ are spectral density functions 
(cf. (A2), Appendix 3) at two points m and n.

The calculation of transfer functions YP is a  time 
consuming process and the following relation is applied:

    (32)

here Ih is the unit matrix of h × h dimension.
Due to the above mentioned statement the matrices may 

be presented in the form:

    (33)

where: A = ΦT
h(K – ω2M) Φh, B = ΦT

h ωC Φh, D = Re YP (ω), 
E = Im YP (ω)

The set of equations (31), (32) in matrix form reads:

    (34)

where the right-hand side of (34) is composed of 2hx2h vectors 
and the m-th vector can be stated as follows:

    (35)

whileis 1m unity located at the m-th place.
By introducing the following notations: kii = ΦT

hKΦh and 
mii = ΦT

hMΦh, cii = ΦT
hCΦh the solution of Eq. (32) can be 

stated as follows:

    (36)

in which m, i = 1, 2,…2h, ω and ω0i denote spectrum frequency 
and i-th structural natural frequency, respectively.

THE SUBSOIL PROPERTIES

The subsoil parameters are assumed deterministic or 
random (cf. [4], [8], [16]), resulting in linear or non-linear 
stochastic problem (elements of stiffness and damping 
matrices are deterministic or random). In both variants the 
subsoil is assumed a homogeneous linear half-space defined 
by shear modulus G and Poisson’s ratio v. It is assumed that 
in the second variant of the subsoil model the shear modulus 
is random, whereas the Poisson’s ratio is deterministic. The 
soil-structure interaction is simulated by a set of springs and 
dash-pots. The mean values and the variances of the spring 
stiffnesses are ([cf. 6], [16]):

    (37)
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where: the superscripts H, V, R and T denote horizontal, 
vertical, flexural and torsional components of the spring 
stiffnesses, r0 is the radius of the foot circular plate,  is the 
mean value of shear modulus and σ2 

G denotes its variance.
Due to the dash-pot coefficients we denote (cf. [6], [16]):

    (38)

where :

is the approximate formula for the mathematical expectation 
of the shear modulus, assuming its Gaussian distribution.

NUMERICAL EXAMPLE

A numerical example concerns the existing structure, the 
Baltic drilling platform. The space beam model of the platform 
with 12 nodes and 12 beams is shown in Fig. 3 (cf. [4], [6]).

Springs and dash-pots in Fig. 5 simulate elastic and damping 
properties of the subsoil. The platform is subjected to wind 
and wave loads which are treated as mutually independent 
stochastic processes. 

Structural parameters are collected in Tab. 1 and 2.

Wave, wind and subsoil parameters assumed in the example 
are as follows:
wave parameters:  = 14m,  = 10s,  = 180m, C Mʹ = Cʹ Mʹ 
= CD= 1, where , ,  are mean height, mean period and 
mean length for long-crested waves, respectively, C Mʹ , C ʹʹM , 
CD are empirical inertia and drag coefficients of the Morison 
equation [15],
wind parameters (see (A2), Appendix 3): 10  =  40m/s, 
K = 0.005, a = b = c = 1where 10 is the mean wind speed at 
a height of 10m above the surface, K denotes the surface drag 
coefficient, a, b, c are empirical coefficients in the Davenport 
formula expressing the cross-spectral density of the along-
wind fluctuating velocity [14],
subsoil parameters: E  =  60MPa, v  =  0.4,   =  21.4MPa, 
σG = 10,7MPa (i.e. 50 per cent of  ) where E is the Young’s 
modulus, v denotes the Poisson’s ratio,  and σG are the mean 
value and standard deviation of the shear modulus.

The selected spectrum responses of the platform model, 
including the case when pin support of the legs simulate 
a connection of the structure to the subsoil, are shown in 
Figs. 4 and 5. The spectrum for the non-linear stochastic case 
is referred to as the mean values of the natural frequencies 
obtained from a linear stochastic solution.

CONCLUDING REMARKS

Based on the carried out analysis the following conclusions 
can be drawn:
1. � The structural response is obtained in a frequency-domain 

by using a linearized form of drag forces, the subsoil stiffness 
and damping parameters are assumed deterministic 

Tab. 1. Element stiffnesses

Tab. 2. Lumped massess

Part EA[MN] GJS[MNm2] EJ[MNm2]

Deck 8.40 ∙ 105 1.94 ∙ 106 2.53 ∙ 106

Legs 0.79 ∙ 105 6.86 ∙ 105 8.93 ∙ 105

Node Mass [Mg]

1 (2, 3) 300

4 (5, 6) 1800

7 (8, 9) 310

10 (11, 12) 160

Total 2570x3=7710

Hydrodynamic masses 550

Deck exploitation mass 1700

Fig. 3. Discrete model of the platform
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(a linear stochastic problem) or random variables (a non-
linear stochastic problem).

2. � Modal reduction of dynamic equations of motion performed 
to achieve a reasonable accuracy of structural response 
includes a few of the lowest modes. 

3. � The assumption that soil-structure interaction is modelled 
by pin supports leads to shifting the response spectrum to 
lower frequency values, compared to spring supports of the 
platform legs (Fig. 4).

4. � The response spectra reveal two main peaks. The first 
one is related to the characteristic frequency of the wave 
(ω = 0.5 rad/s) whereas the second one is linked with 
the lowest natural frequencies of the structural system 
(ω01 = 1.561 rad/s for β = 0° and ω02 = 2.162 rad/s for 
β = 90°).

5. � There are series of zero points in the spectra due to those 
wavelengths which produce the forces on legs that are equal 
and of opposite sign (Fig. 4 and Fig. 5). 

6. � The wave load makes a major contribution to dynamic 
response in comparison to the wind load; the difference 
does not exceed 10% (cf. [6]).

7. � For the non-linear stochastic case the peak in the response 
is about twice as great as that in the case of deterministic 
subsoil parameters. Thus the evaluation of the soil-
structure interaction parameters is decisive in the response 
approximation.

8. � In the case of relatively slender members of steel platforms 
major part of the damping forces of the vibrating system is 
produced by sea waves. When concrete gravity platforms 
are considered the subsoil contributes to total damping 
more significantly (cf. [2], [17], [18]).

9. � The analysis presented in the paper refers to more general 
offshore engineering dynamic systems, thus it may be also 
applicable to structures supporting offshore wind turbines.
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APPENDIX 1

APPENDIX 2

The Massel-Striekalov spectrum takes the form [13]:

    (A1)
with parameters ,  indicating the mean wave height and 
frequency of the wave field.

APPENDIX 3

A spectral density function of the wind velocity fluctuations 
considered a one-dimensional stationary Gaussian process 
with zero mean value is given by Davenport [14]:

    (A2)

where K is the surface drag coefficient for open sea areas, 
L is the length scale of turbulence (L = 1200m according to 
Davenport), 10 represents the mean speed at a height of 10m 
above the surface, ω is the frequency. The graph of Eq. (A2) 
is presented in Fig. 8.

Fig. 6. Calculation flow chart of an internal force and stress spectra

Fig. 7. One-dimensional wave spectrum defined by Striekalov and Massel [13]

Fig. 8. The Davenport spectrum [14]
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