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AbstrAct

Container ship length was estimated using artificial neural networks (ANN), as well as a random search based on 
Multiple Nonlinear Regression (MNLR). Two alternative equations were developed to estimate the length between 
perpendiculars based on container number and ship velocity using the aforementioned methods and an up-to-date 
container ship database. These equations could have practical applications during the preliminary design stage of 
a container ship. The application of heuristic techniques for the development of a MNLR model by variable and function 
randomisation leads to the automatic discovery of equation sets. It has been shown that an equation elaborated using 
this method, based on a random search, is more accurate and has a simpler mathematical form than an equation 
derived using ANN.
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INTRODUCTION

The ship design process consists of three main stages: 
the preliminary, contract, and detailed design steps. The 
key characteristics of ship design are based on the main 
requirements of a shipowner during the preliminary design 
stage. A parametric and geometric design stage are the 
main phases of preliminary design. Watson [1], Rawson 
and Tupper [2], and Papanikolaou [3] have argued that the 
selection of a ship’s main dimensions such as length, breadth, 
and draught are the main parametric design objectives. 
However, there is no detailed information about technical 
characteristics of a ship during the parametric design stage 
to accurately estimate these parameters. The ship designer 

should resolve this problem and select these characteristics 
based on the requirements of the shipowner, the character 
of the ship’s mission, and various formal maritime rules and 
regulations [1-3]. 

Ship design is a loop iterate process which goes through 
a design spiral, originally introduced in 1959 by Evans [4] and 
modified in 1985 by Andrews [5]. The inaccurate estimation of 
ship dimensions during the parametric design stage increases 
the number of design spiral loops, and the design time and 
project cost. As noted by Papanikolaou [3] and Chądzyński 
[6] for a standard ship type, various statistical, empirical, or 
regression methods based on similar ship builds may be used 
to solve this problem. 
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Chądzyński [6] and Papanikolaou [3] argued that initially, 
the length of a cargo ship is estimated based on cargo capacity, 
such as its deadweight, hold, or TEU capacity. Other ship 
dimensions are usually estimated based on this length at 
later stages.

Various linear or nonlinear equations developed using 
a container ship database have often been used for the initial 
estimation of a ship’s length. Piko [7], Kristensen [8], and 
Papanikolaou [3] prepared a set of equations for estimating 
a container ship’s main dimensions. Piko’s equations were 
based on the statistical data of container ships that were being 
built up to 1980. Papanikolaou used the data of container 
ships built prior to 2005 and Kristensen used a database 
of container ships built before 2013. Linear and nonlinear 
regression methods were used in these studies.

Over the past 20 years, container ship design trends have 
been influenced by market and trade demands. The financial 
crisis of 2007-2008, together with fuel price changes and strict 
emission requirements have all had an influence on these 
trends. Container ships are usually categorised as volume 
carriers in common design procedures. Container number 
and velocity are the main requirements of any container 
ship owner. Economic and environmental factors could have 
an influence on changing these requirements and later, the 
design process in the future. Figure 1 shows container ship 
age profiles which are dependent on size and mean speed 
values. The Sea-web Ships database [9] of all container ships 
built from 2000-2020 was used in this analysis. Figure 1 
shows that container ship capacity and speed have fluctuated 
to a large degree throughout the last 6-7 years. Moreover, the 
latest container ships usually have a higher TEU capacity and 
a lower Froude number.

  
Fig. 1. Age profiles of the container ships: mean number of containers’ TEU capacity and Froude number (Fn) vs delivery year 
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Fig. 1. Age profiles of the container ships: mean number of containers’ TEU 
capacity and Froude number (Fn) vs delivery year

Old regression formulas developed before 2014 are 
inadequate for considering the design trend changes of 
modern container ships.

A literature review showed that key container ship 
characteristic equations were developed based on 
deadweight or container number capacity. While Piko [7] 
and Papanikolaou [3] used deadweight capacity, Kristensen 
[8] used a TEU container number for a ship’s characteristic 
estimation. Deadweight capacity includes the mass of the 
cargo, ballast, and ship stores. To calculate the cargo mass, the 
number and mass of containers must be known. Container 
mass is based on the number of containers. However, a design 
characteristic estimation based on the number of TEU 
containers does not include ballast and store mass. However, 
a deadweight calculation using the number of containers 
required is unnecessary in this case. 

A literature review did not show which parameter led 
to the smallest estimation error of a design characteristic, 
i.e., the deadweight or container number capacity. Piko, 
Papanikolaou, and Kristensen’s formulas for a container 
ship length’s estimate did not consider velocity, despite it 
being a main ship owner’s requirement. These formulas 
were developed using regression methods. Initially, Piko 
implemented nonlinear approximation methods such 
as power and 2nd degree polynomial regression models. 
Deadweight was used as an independent variable in these 
equations. Piko compared the results and considered that 
the functions developed using the power regression model 
provided reliable estimates of the parameters over a wider 
range of deadweights. 

Papanikolaou [3] presented a theory and a detailed 
compendium of knowledge on practical methods for the 
preliminary design of a ship. This book also provides an 
equation for estimating the length between perpendiculars 
of a container ship using the deadweight developed using 

a power regression model. 
In Piko and Papalikonau’s 
studies, the exponent values 
of non-linear regression 
functions were similar and 
almost 0.4. The Kristensen 
approximations were based 
only on TEU capacity and 
were developed using linear, 
2nd degree polynomial and 
power regression models. In 
this study, the exponents of the 
power regression models were 
0.38, 0.55, and 0.34 for Small, 
Panamax, and Post-Panamax 
container ships, respectively. 

There have been no 
publications in the scientific 
literature on the use of 

artificial neural networks (ANN) to determine the length 
of a container vessel. Only Gurgen et al. [10] applied an 
ANN to predict the main dimensions of chemical tankers 
using deadweight capacity and speed. An ANN based on 
a multi-layer perceptron structure with 13 neurons in a hidden 
layer was used in this research. Gurgen et al. [10] argued that 
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neural networks may create more accurate models for complex 
systems than standard statistical methods. 

Therefore, the aim of this study was to develop an empirical 
equation to estimate the length between perpendiculars for 
container ships built since 2014, considering the container 
number and velocity.

MATERIALS AND METHODS

The container ship characteristics used in this study are 
defined as follows:

Length between perpendiculars (LBP) – the horizontal 
distance measured parallel to the baseline from the aft to 
forward perpendicular. 

Ship velocity (V) – service speed in knots, which is less 
than the maximum ahead service speed.

TEU – the maximum number of 20-foot standard 
containers below and above the deck.

Deadweight (DWT) – the maximum deadweight of the 
ship immersed at the summer load line in water with a 1.025 
t/m3 density.

Froude number (Fn) – a dimensional number calculated 
as shown in Eq.(1).

Fn=
V

�g×L
  (1)

where
V – ship velocity in m/s, 
g – standard gravity.
L – length of the ship (it was here assumed that L = LBP)

The data of the 120 latest new build container ships from 
2014 to 2020 was used in this study. The source of the data 
was Sea-web Ships [9]. Sister ships with identical or similar 
characteristics were removed from the data set. The range and 
mean values of ship samples that remained after verification 
are shown in Table 1.

Tab. 1. The mean, minimal, and maximal values of container ships, where: LBP = length between perpendiculars,  
B – breadth, D – side depth, T – draft, V – velocity, TEU – the number of containers, DWT – deadweight, 
and Fn – Froude number

LBP [m] LBP/B [-] B/D [-] T [m] V [kts] TEU [-] DWT [t] Fn [-]
Min 69.20 3.95 1.61 3.50 9.0 100 1780 0.15
Mean 214.59 6.12 1.96 10.94 19.0 5265 60675 0.22
Max 386.23 7.26 3.67 16.50 25.0 21000 202036 0.30

In this study, ANNs and a random search method based 
on nonlinear regression and heuristics techniques were used 
to estimate the container ship’s length. The second aim of the 
research was to compare the accuracy of these methods for 
estimating the container ship’s length. 

ARTIFICIAL NEURAL NETWORKS (ANN)

In recent years, ANNs have been used in several scientific 
ship design theory publications. For example, Alkan et al. [11] 
calculated the initial stability parameters of a fishing vessel 
using neural networks. Artificial neural networks were 
developed using sample ship data to estimate the vertical 
centre of gravity, the transverse metacentre height above 
the keel, and the vertical centre of buoyancy of the ship. 
Gurgen et al. [10] created an ANN to estimate chemical tanker 
dimensions. In this paper, the main ship parameters, such 
as, overall length, length between perpendiculars, breadth, 
draught, and freeboard were estimated based on deadweight 
and vessel speed. Gurgen et al. [10] argued that the initial 
main particulars of chemical tankers could be determined 
using ANNs, offering results which were much more accurate 
than those obtained with sample ship data. Ekinci et al. [12] 
used 18 computational intelligence methods (including neural 
network methods) to estimate the main design parameters 
of oil/chemical tankers. Abramowski [13] developed a model 
for determining the effective power of a ship using neural 
networks. In this publication, a mathematical model was 
developed using neural networks to determine the effective 
power of a ship. Cepowski [14] applied ANNs to estimate 
added resistance in regular head waves while using ship 
design parameters, such as length, breadth, draught, and 
Froude number. To create a reliable model, only experimental 
data determined through model test measurements was 
used to train the neural network. Song et al. [15] used the 
radial base function ANN to predict a ship’s rolling motion. 
Based on this method, the disturbing moment and roll time 
series were estimated. Sahin et al. [16] used the ANN model 
linked to the main ship parameters to estimate the dilution 
factors in the preliminary design. Gross and deadweight 
ton, passenger number, freeboard, engine power, propeller 
number, and block coefficient values were used to estimate 
the likely dilution factors. Luan et al. [17] used ANNs to 

estimate the fuel consumption 
of container vessels. Cheng et 
al. [18] presented a comparative 
study of the sensitivity analysis 
and simplification of the ANN 
for a ship’s motion prediction. 
Indeed, the use of ANNs has 
provided excellent results in 
several research experiments.

An ANN was created based 
on the functioning of the 

biological nervous system. The nervous system is a structure 
consisting of neurons and connections linking them. 
A numerical model of the neural network was developed 
based on this structure and the signal transmission method. 
The neural network was built from an input, output, and one 
or more hidden layers that consist of neurons [19]. Values 
from previous layers were passed through neurons which 
were connected with weights. These weights determined the 
relationships between input and output data [20]. The main 
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problem in developing an artificial network is selecting an 
optimal network structure and calculating the neuron weight 
values. Therefore, different types of neural networks and 
methods of learning can be used. Multilayer nonlinear neural 
networks and a learning backpropagation algorithm are often 
applied to predict technical parameters.

Overfitting phenomena are an additional problem in the 
development of neural networks. This phenomenon occurs 
when a statistical model has too many parameters in relation 
to the data sample size used in the creation of the model. 
A test set method is usually used to detect this phenomenon. 
Unfortunately, about 25-30% of randomly selected data 
is wasted to test the model in this method. Additionally, 
about 25-30% of data are used to validate the neural network 
during the learning process. This means that about half of the 
dataset is wasted throughout the neural network development 
process.

In this study, the search process 
for the best neural network 
included the following steps:
•	 creating a neural network 

topology,
•	 training a network,
•	 testing a network,
•	 making an accuracy 

assessment of a network’s 
model based on the test 
results.
The statistical method of mean absolute error (MAE) value 

was used for an accuracy assessment Eq (2).

MAE=
��LBP-LBPe�

n
 (2)

where:
LBP – length between perpendiculars from the data set,
LBPe – estimated length between perpendiculars using 

a neural network,
n – number of ships in the data set.

The following neural network types were tested for 
container ship length prediction:
•	 generalised regression neural network (GRNN),
•	 multilayer perceptron (MLP),
•	 radial basis function network (RBF),
•	 linear network.

To develop these neural networks the following 
assumptions were made:
•	 sum of squares as an error function,
•	 backpropagation as demonstrated by [19,21,22], the 

conjugate gradient descent [19], and Levenberga-Marquardt 
[23,24] as a training algorithm,

•	 logistic sigmoid function as activation,
•	 validation and test sets included 30 cases each (60 cases 

in total).

RANDOM SEARCH METHOD

A random search method based on a Multiple Nonlinear 
Regression (MNLR) and heuristic algorithm was applied 
to estimate the alternative length between perpendiculars. 
A general MNLR model is given by the relations in Eq. (3) 
[25,26].

�Y=α+β
1
Xi+β2Xj+β3Xi

2+β
4
Xj
2+…+β

k
XiXj   (3)

where:
Y – dependent variable,
X – independent variables,
i, j – number of independent variables,
α – intercept, 
β – coefficient, 
k – observation number.

The authors defined the following general model Eq. (4) 
to develop the relationship between the length between 
perpendiculars (LBP), velocity (V), and the number of 
containers (TEU) based on the model Eq. (3): 

LBP�� + �1f1(V) + … + �n fn(V) + �n+1fn+1(TEU) + … + �n+m fn+m(TEU) + �n+m+1fn+m+1(V) 

fn+m+2(TEU) + … + �n+m+z fn+m+k-1(V)fn+m+k(TEU)
(4)

where:
α – intercept, 
β – coefficient, 
f – base function, such as power, logarithmic, or exponential 

function,
n, m, k, z – the number of functions or β coefficient.

A set of 400 power, logarithmic, or exponential functions 
was used in this study. Finding the best TEU and V 
combinations in this model and selecting the best-fitting 
functions from the function set led to a large number of 
possible variants. For example, if we assume the simplest 
model Eq. (5):

 LBP�� + �1f1(V) + �2f2(TEU) + �3f3(V) f4(TEU)  (5)

which consists of four function combinations (f1, …, f4) 
selected from a collection of 400 base functions, we get the 
total combination number (n): 

n=400
4
=2,65E+10   (6)

Searching through all these possible variants using an 
exact algorithm is computationally expensive and time-
consuming, and thus, a heuristic approach was applied to 
solve this problem. The disadvantage of this method is that 
the solution is not as optimal as the exact approach. However, 
multiple searches allow the user to find a solution which is 
almost optimal.



POLISH MARITIME RESEARCH, No 2/202140

An algorithm can be developed in which variables and 
base function combinations are randomised during the first 
step. Then, the model’s fit to data is checked, and statistical 
errors are calculated. Finally, the best functions and variable 
combinations are selected through looped searching.

The authors implemented selected parts of this algorithm 
in the ndCurveMaster computer program [27] which was 
used to support equation searching.

Increasing model elements improves accuracy but may lead 
to overfitting with this method. Therefore, the next problem 
was to detect and prevent overfitting.

A test set was randomly selected from the data set to detect 
overfitting. The following two data sets were selected:
•	 data set A contained 75% of all data (90 cases) used for 

model development,
•	 test data set B contained 25% of all data (30 cases) used 

for overfitting detection.
For data sets A and B, the root mean squared errors 

RMSE(A) and RMSE(B) were calculated using the following 
formula:

�RMSE(A or B)=���LBP-LBPe�2

n
 (7)

where:
LBP – length between perpendiculars from the data set,
LBPe – estimated length between perpendiculars,
n – number of ships in set A or B.

In this study it was assumed that overfitting occurs when 
the root mean squared error related to test set B is 20% higher 
than the root mean squared error related to set A. To estimate 
the overfitting, the ratio of the error RMSE(B) to RMSE(A) 
was calculated.

The algorithm schemes are shown in Figures 2 and 3. 
As shown in Figure 2, during the first step, data for sets 
A and B were randomly selected, and the simplest model 
(5) was initially defined. Next, the best functions f1–f4 
and regression coefficient values were discovered through 
random searching, based on the algorithm shown in 
Figure 3. Better functions were selected based on a higher 
correlation coefficient R value.

As shown in Fig 2, after the initial development of the model 
(5), a standard error (SE) value was checked. The research 
assumed that the SE value limit was 7.7 m (ship length).

If the SE was greater than this limit value, the model was 
randomly expanded in the next step. After this expansion, 
the occurrence of overfitting phenomena was checked 
by computing the ratio RMSE(B)/RMSE(A). If this ratio 
value was greater than 1.2, the least statistically significant 
component was removed from the model. This procedure 
was looped until these two conditions were met.

Randomisation of 75% of the data for set A and 
25% for test set B

Computing of errors in sets A and B:

SE(A), RMSE(A), RMSE(B), 

ratio RMSE(B)/RMSE(A)

Is 

SE(A)<7.70 m

?

Yes

Is

RMSE(B)/RMSE(A)
<1.2 ?

Selection the best model by using the 
algorithm shown in Fig 4 and set A

Yes

The end of searching

No
Enhance the 

model

NoReduce the model

Fig. 2. The general algorithm scheme, where: A – data set, B – test data set, 
SE(A) - standard error related to set A, RMSE(A) – root mean squared error 

related to set A, RMSE(B) - root mean squared error related to test set B

Defining the regression model

LBP=a + f1(V) + … + fn(V) + fn+1(TEU) + … + 
fn+m(TEU) + fn+m+1(V, TEU) + … + fn+m+k(V, TEU)  

Collection of base functions

f1, f2, f3, …, fm

Base function and independent variable 
randomisation, for example:

f1 = ln(TEU), f2 = V3, f3 = exp2(V)…

Computing the R2 coefficient for data set A

Is

R2 maximal

?

Yes

End

Fig. 3. The general algorithm scheme for searching the model for the maximum 
R-squared value, where f – base function, n, m, k – the number of functions
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RESULTS

ARTIFICIAL NEURAL NETWORKS

Among all the neural network types, the multiple 
perceptron (MLP), which has two neurons in the input layer, 
11 neurons in the hidden layer, and one neuron in the output 
layer, was the most accurate. Table 2 shows the statistical data 
of this neural network broken down by teaching, validation, 
and testing sets. The mathematical form of this network is 
given by the formulas in Eqs. (8), (9), (10), (11), (12), and (13).

 

LBP=
c

0.00318
+0.22 (2)

where:
c – the variable, calculated as follows: 

(3)

 � � ������� �������������������������������������������������������������� ������ � 
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  (5)

where:

b1=TEU∙ 4.89∙10
-5

+0.00489  

      b2=V∙0.0654+0.5882        

 (6)

b1=TEU∙ 4.89∙10
-5

+0.00489  

      b2=V∙0.0654+0.5882         (7)

Tab. 2. Statistical parameters of an ANN

Training  
set

Validation 
set

Testing  
set

Mean absolute error (MAE) 8.49 8.12 7.88

Correlation 0.99 0.99 0.99

RANDOM SEARCH METHOD

Figures 4 and 5 show the process of discovering an equation 
for estimating the length between perpendiculars using the 
random search method. The SE value related to set A, the ratio 
RMSE(B)/RMSE(A), and the number of model elements are 
shown through the model evolution. In the first phase, the 
model was inaccurate and the SE value was high. Therefore, 
the model was expanded to seven elements in the next phase. 
This model extension reduced the SE error but increased the 
RMSE(B)/RMSE(A) ratio which overfitted the model. In 
the next phase, the model was reduced to four elements to 
avoid overfitting. However, the model accuracy was reduced 

after this procedure. Finally, 
increasing the model element 
number to five and finding 
the most accurate functions 

allowed the successful completion of this search. Eq. (14) 
was discovered:

LBP = 54.296 + 2.656 · TEU
1/2 + 1.4E-06 · V

5.6
– 2.821E-21 · TEU

5.6
· V

-1.8
–1.116E+08 · 

TEU-1.3
· V

-4
– 1.007E-04 · TEU

0.4
· V

3.1 (8)

Eq. (14) is characterised by high accuracy for set A, i.e.:
•	 R-squared = 0.993,
•	 Standard error SE = 7.69 m.

The error difference between set A and test set B is less 
than 20%, i.e.:
•	 Root mean squared error related to set A RMSE(A) 

= 7.43 m,
•	 Root mean squared error related to set test B RMSE(B) 

= 8.69 m,
•	 the ratio of RMSE(B) to RMSE(A) = 1.17.

1

1,05

1,1

1,15

1,2

1,25

1,3

0

1

2

3

4

5

6

7

8

0 50 100 150 200 250

RM
SE

(B
)/

RM
SE

(A
)

Th
e 

nu
m

be
r o

f c
om

po
ne

nt
s

The number of model evolution

the number of components RMSE(B)/RMSE(A)

Fig. 2. The ratio of the root mean squared error in test set RMSE(B) to data set 
RMSE(A), and the number of model elements through the model evolution



POLISH MARITIME RESEARCH, No 2/202142

7

7,5

8

8,5

9

9,5

10

0

1

2

3

4

5

6

7

8

0 50 100 150 200 250

St
an

da
rd

 e
rr

or
 S

E 
[m

]

Co
m

po
ne

nt
 n

um
be

r

The number of model evolution

the number of components Standard Error SE [m]

Fig. 5. Standard error (SE) value in set A, and the number of model elements 
through the model evolution

DISCUSSION

EVALUATION OF MODELS IN TERMS OF ESTIMATION 
ACCURACY

Figures 6 and 7 show the estimated length (LBP) values in 
the full range of TEU capacity and ship velocity calculated 
using Eqs. (8) and (14). The surfaces presented on these figures 
look similar, though for the extreme values of velocity and 
TEU capacity, the length calculated using an ANN was slightly 
larger than the one obtained using the random search method.

Figure 8 compares the length calculations using both 
methods for ship sample data for selected speeds. As shown in 
Figure 8 both methods gave similar results; Eq. (14) provided 
slightly more accurate results in relation to sample ship data 
at a speed of 11 kts.

Figure 9 illustrates the estimates obtained using both 
methods compared to test sample ship data. The test data 
was in the range of full ship length. This figure shows that 
the length values calculated using both methods were close 
to the perfect fit line.

Table 3 shows the root mean squared error (RMSE) and 
Pearson R-squared coefficient values relating to regression 
Eq. (14) and the developed neural network referenced for the 
entire data set (including the training, validation, and test 
sets). This table shows that Eq. (14) is characterised by a RMSE 
estimation error 2 metres smaller than Eq. (8).
Tab. 2. The values of the root mean squared RMSE error and Pearson 

R-squared coefficients relating to regression (14) and the developed 
neural network referenced for the entire data set

Equation RMSE [t] R-Pearson [-]

equation (14) 7.77 0.996

equation (8) 9.86 0.994
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AN EVALUATION OF METHODS IN TERMS OF EASE 
OF COMPUTATION AND MODEL SIMPLICITY

The equations presented in this article were developed 
for practical use by a ship designer. In this respect, one 
important factor was the possibility of using these formulas 
for manual calculations by a person with a basic knowledge 
of computer techniques. For this reason, model simplicity 
was an important criterion.

Research showed that Eq. (14) developed using the random 
search method had a simpler form than Eq. (8) developed 
using neural networks. Eq. (14) is based on only seven basic 
functions and six coefficients. The analytical relationships of 
independent variables are also clearly shown in this equation. 
The practical use of this equation requires only a basic 
knowledge of computer techniques. A scientific calculator 
or a simple spreadsheet can be used for calculating the LBP 
length based on Eq. (14).

In contrast, Eq. (8), which was developed using an ANN, 
is much more complex. Several calculations should be 
performed using the formulas in Eqs. (8) – (13) to estimate 
the length between perpendiculars in this case. The 
relationships between TEU capacity, ship velocity, and ship 
length presented in the formulas of Eqs. (9) - (12) are unclear. 
Eq. (8) ANNis more difficult to implement by a normal 
user. Indeed, the user must have an advanced knowledge of 
computer techniques to implement the ANNANN model, or 
alternatively, a specialised computer software may be used. 
The use of a scientific calculator to estimate LBP length using 
Eqs. (8) - (13) is more complicated and time-consuming than 
simply using Eq. (14).

THE EVALUATION OF METHODS FOR THE USE 
OF DATA

Both methods presented here use heuristic techniques, so 
these methods do not offer an optimal solution. The complex 
equations developed using an ANN and a random search 
method may lead to overfitting. Therefore, overfitting was 

detected using a test set which included 25% of the data in 
both methods. An ANN and random search method are the 
same in this respect.

However, an additional validation data set was used to 
develop the ANN. This validation set also included 25% of 
the data. In this research, ANNs lost 50% of data in total for 
validation and testing.

In contrast, the random search method did not require 
a validation set and lost only 25% of the data during the 
overfitting detection. In this regard, the random search 
method provides a more effective use of the data set than 
the ANN. 

Table 4 shows a summarised method comparison in terms 
of different properties.
Tab. 3. A summarised method comparison in terms of different properties

Method Equation 
no Accuracy Simplicity Ease of 

computation
Data 
loss

ANN  (8) high complex difficult 50% 
Author’s 
method (14) high, RMSE 2 

metres smaller simple easy 25%

CONCLUSIONS

In ship design, only DWT or TEU capacity are usually 
used to estimate a container ship’s length. Over the last few 
years, economic and environmental factors have affected 
ship owner requirements. At present, ship velocity may 
be a second key design parameter in addition to TEU or 
DWT capacity. Therefore, alternative design equations for 
estimating a container ship ‘s length based on TEU capacity 
and ship velocity have been proposed in this research. This 
provides a new approach in naval engineering. The equations 
presented in this work were developed based on the data of 
the most recent standard container ships built since 2014. 

In this article, ANNs and a random search method based 
on MNLR were applied to estimate a container ship’s length. 
The conclusions drawn from these compared methods may 
be summarised as follows:
•	 Both methods are characterised by a high estimation 

accuracy. The random search method is slightly more 
accurate and offers a RMSE error value less than 2 metres 
in length. 

•	 Eq. (14) developed using the random search method is 
simpler and easier to compute than Eq. (8) developed using 
an ANN. 

•	 The random search method used the data set more 
effectively than the ANN.

•	 The random search method also only used 25% of the 
data for testing while the ANN needed 50% of the data 
for validation and testing.
Estimates acquired with an equation developed using 

Multiple Nonlinear Regression (MNLR) may be as accurate 
as ones obtained using ANNs. The application of heuristic 
techniques for the development of MNLR by variable and 
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function randomisation automatically enables the discovery 
of a set of equations.

The methods presented in this article may be used 
to estimate the parameters of a container ship, such as 
breadth, side depth, or draught. In general, in the case of 
volume carriers, these dimensions are primarily determined 
by the ratio of length to breadth and side depth, and the 
displacement of the vessel. However, it seems that the use of 
these estimates could be helpful to assess the accuracy of the 
design calculations. The results presented in this paper and 
in [4] indicate the possibility of developing a neural network 
to predict all dimensions of a container ship and, potentially, 
other types of ships.

The algorithms described here may have practical 
applications for the commercial design of container vessels. 
However, these formulas can be inaccurate for the design of an 
innovative container ship and can only be used to estimate 
the length of container ships with design characteristic ranges 
listed out in Table 1. The use of algorithms to determine 
a ship’s length for characteristics outside these ranges may 
possibly be associated with less reliable calculations.
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