
POLISH MARITIME RESEARCH, No 1/2021 163

POLISH MARITIME RESEARCH 1 (109) 2021 Vol. 28; pp. 163-172
10.2478/pomr-2021-0015

COMPUTATIONAL INTELLIGENCE IN MARINE CONTROL 
ENGINEERING EDUCATION

Józef Lisowski
Gdynia Maritime University, Poland

ABSTRACT

This paper presents a new approach to the existing training of marine control engineering professionals using artificial 
intelligence. We use optimisation strategies, neural networks and game theory to support optimal, safe ship control 
by applying the latest scientific achievements to the current process of educating students as future marine officers. 
Recent advancements in shipbuilding, equipment for robotised ships, the high quality of shipboard game plans, the 
cost of overhauling, dependability, the fixing of the shipboard equipment and the requesting of the safe shipping and 
environmental protection, requires constant information on recent equipment and programming for computational 
intelligence by marine officers. We carry out an analysis to determine which methods of artificial intelligence can 
allow us to eliminate human subjectivity and uncertainty from real navigational situations involving manoeuvring 
decisions made by marine officers. Trainees learn by using computer simulation methods to calculate the optimal safe 
traverse of the ship in the event of a possible collision with other ships, which are mapped using neural networks that 
take into consideration the subjectivity of the navigator. The game-optimal safe trajectory for the ship also considers 
the uncertainty in the navigational situation, which is measured in terms of the risk of collision. The use of artificial 
intelligence methods in the final stage of training on ship automation can improve the practical education of marine 
officers and allow for safer and more effective ship operation.

Keywords: ship control,marine engineering curriculum,computational intelligence,game theory,computer simulation

INTRODUCTION

This paper addresses the theoretical and practical training 
of students as future ship officers in the field of ship control 
engineering and its functional facilities and processes. 
Control engineering includes the fundamentals of automation 
and specialist subjects in the field of automation, computer 
science, electronics, optimisation and artificial intelligence 
(AI). Knowledge in the field of control engineering is acquired 
successively, through the following stages: lectures, laboratory 
work, simulations and operational practice on a ship.

In laboratory sessions dealing with the fundamentals 
of automation, students become acquainted with the two 
main decision support tools of AI and game theory. These 

are represented by two exemplary control algorithms, which 
allow for a better understanding and application of training 
in simulator sessions.

The purpose of control engineering training within marine 
territories is to pass on information on the development of 
ship computerisation frameworks and associated tasks, as 
set out by the International Maritime Organisation in the 
STCW-95 convention. The training of marine officers on 
automation should include the modern equipment carried on 
ships, in addition to control engineering theory and modern 
control engineering techniques, and may follow the textbook 
by Nise [19]. Heiselberg and Stateczny [7], Huang et al. [10], 
Lazarowska [13], Lebkowski [14] and Zhuang et al. [32] have 
shown that computer-aided navigation training on safe ship 
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controls that involves computational intelligence methods 
and game theory has become important. Annual statistical 
studies prepared by the European Maritime Safety Agency 
(EMSA), have demonstrated that around 80% of maritime 
accidents are caused by the subjectivity of a navigator when 
assessing the navigation situation, and before making the 
final manoeuvring decision.

An analysis by Ahn et al. [1] has shown that the use of AI 
methods in the form of a neural network to decide on the 
correct direction for the ship during situations of excessive 
proximity to others allows for the consideration of the 
navigator’s subjectivity during the impact on the final safe 
manoeuvre.

Liu et al. [16] demonstrated that the use of game hypothesis 
to decide on a safe direction for a ship in a collision event 
allows for the consideration of uncertainty when encountering 
large numbers of nearby ships, especially in areas of limited 
visibility. In both cases, there are many solutions for 
determining safe directions for ships, and the best of these 
solutions should be selected, i.e. the optimal solution based 
on a particular criterion, such as extending the cruise route to 
ensure safe avoidance of other ships. As reported by Guenin 
et al. [5], Speyer et al. [24], Szlapczynska et al. [25], Witkowska 
et al. [30] and Yong [31], both static and dynamic optimisation 
methods can be used.

The aim of this research is to present two control algorithms 
to represent the two main components that are important 
when making decisions in simulator training: the subjectivity 
of decisions, which can be described by an artificial neural 
network model, and the uncertainty of navigation situations, 
as measured by the possible risk of collision, which can be 
mapped using a model of an appropriate game. These studies 
can be very valuable both when designing of new versions of 
simulators and when using them for training. 

These new elements link the Bellman optimality principle 
with a neural network model to generate domains for ships 
and a matrix game, with collisional risk to the synthesis of 
safe steering of the ship’s movement.

CONTROL ENGINEERING 

Control engineering is taught within the Faculties of 
Navigation, Marine Engineering and Electrical Engineering 
at the Maritime University. Cwilewicz et al. [4] found that the 
curriculum grades within each department were different, 
and addressed both the explicit responsibilities of graduates 
when on board and the requirements arising from maritime 
conventions.

Cadets in the Faculties of Navigation and Marine 
Engineering mainly receive instruction in the single subject 
of automation fundamentals, while those in the Faculty of 
Electrical Engineering receive a broader range of training in 
automation due to their wider range of official duties when 
operating devices onboard. Based on the principles identified 
by Borrego et al. [3], Henri et al. [8] and Lattuca et al. [12], it is 
possible to design curricula in such a way that cadets receive 

practical instruction in automatic control techniques, which 
is more useful within the profession of ship electroautomatics. 
The two-level system for training in automation within the 
Faculty of Electrical Engineering includes the following 
topics, delivered via lectures and laboratories:
•	 At the basic engineering level:
 Basics of Automatics
 Electronics and Power Electronics
 Digital Technology
 Mechatronics and Robotics
 Devices and Control Systems Engineering
 Automated Electrical Ship Power Drives
 Automation of Ship Power Systems
 Programmable Logic Controllers
 Visualisation of Control Processes
•	 At the more advanced Master’s level:
 Advanced Control Engineering Methods
 Optimisation Methods
 AI Methods
 Digital Control Systems
 Automation of Electrical Power Plants
 Distributed Control Systems
 Computer Control Support.

FUNDAMENTALS OF AUTOMATION 

The course on the Basics of Automatics includes the 
following themes:
1) Theory and techniques of automation:

•	 Principles of automation-basic definitions, open and 
closed-loop feedback control systems, types of automatic 
control;

•	 Methods of describing the static and dynamic properties 
of the physical elements of control systems: transfer 
function, time and frequency responses, state equations;

•	 Basic physical elements of control systems and their 
features;

•	 Characteristics of typical industrial control objects;
•	 Identification of control objects;
•	 Structural block diagrams of automatic control systems;
•	 The requirements that shoud be met by automatic 

control systems-stability margins, quality control within 
transitory states, accepted steady-state errors, correction 
of control systems;

•	 PID controllers-structures and characteristics, selection 
of optimal settings;

•	 Direct digital control;
•	 Complex systems of automatic control-cascade control, 

closed-open systems, multivariable control systems;
•	 Nonlinear systems, relay control, two-set controllers, 

three-set controllers, step controllers.
2) Modern control systems:

•	 Extremal control;
•	 Optimal control;
•	 Adaptive control;
•	 Game control;
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•	 Computational intelligence control-expert systems, 
fuzzy control, artificial neural networks, evolutionary 
algorithms.

3) Systems engineering for control of ship movement:
•	 Methods for describing the dynamics of a ship as an 

automatically controlled object;
•	 Ship control systems-maintenance of course and 

trajectory, control of the ship’s speed, dynamic 
positioning, precise ship steering via thrusters, roll 
stabilisation, safe control in collision situations, 
optimisation of the ship’s route.

4) Shipboard control systems:
•	 Main propulsion system of a ship with adjustable pitch 

propeller;
•	 Power generation plant;
•	 Cargo refrigerated hold;
•	 Ballast and bilge systems;
•	 Thruster system;
•	 Fire detection, alarm and fighting system;
•	 Microprocessor system for monitoring and control of 

the engine room.

PRACTICAL EDUCATION

Trussell et al. [28] and Weisner et al. [29] report that the 
teaching process takes place in the following three forms:
•	 Lectures, exercises and laboratory exercises;
•	 Operating experience through a school (seafaring and 

manoeuvring practices) and on board commercial ships 
(operational practices);

•	 Exercises on training simulators (navigational, radar, cargo 
and specialist).
Based on experience, Guzey et al. [6], Nikolic [18] and 

Trevelyan [27], from the perspective of the forthcoming work 
of a graduate as an administrator of control frameworks 
onboard a ship, the training on ships and test system practices 
play a key role.

COMPUTER SUPPORT FOR OPTIMAL AND 
SAFE SHIP CONTROL

Safe ship control relies upon constant monitoring 
of the conditions at sea, anti-collision manoeuvres, its 
acknowledgement and the safe control to the closest return 
point, recently assigned on the electronic map. These factors 
are crucial when deciding on a safe trajectory for a ship, since 
a ship’s single-manoeuvre system or potential speed is a multi-
stage decision-making process, as discussed by Bellman [2].

The implementation of a multi-stage safety control system is 
difficult, due to the complex properties of the control process. 
In training strategies that involve the selection of a manoeuvre 
or trajectory, one should expect the control algorithms 
programmed within the microprocessor controller, which 
defines the anti-collision framework of the ARPA radar, as 
illustrated in Figure 1.

Fig. 1. Computer navigator decision support system in a collision situation 
at sea.

Ship control relies on the accuracy of traffic data, and 
uses mathematical descriptions of control processes. These 
descriptions consist of three components: kinematic and 
dynamic equations for the motion of the ship, sea waves, 
and complex navigational situations, as determined by the 
number of ships passed and the visibility at sea.

Kula [11], Liu [17] and Nise [19] show how a wide variety 
of models have different impacts on the synthesis of various 
control algorithms and the impact of safe ship motion 
controls.

The aim of this article is to show that it is possible to 
determine the single best solution from the many possible 
alternatives for calculating the safe trajectory of a ship, i.e. the 
one that ensures the least loss of the way to the safe passing 
of the encountered ships.

COMPUTER SIMULATION OF A NEURO-OPTIMAL 
SAFE TRAJECTORY THAT TAKES ACCOUNT 
OF NAVIGATOR SUBJECTIVITY

Over 80% of ship collisions are caused by human factors 
arising from subjective assessments of navigational situations 
and manoeuvring decisions. It is estimated that about half of 
these losses could be avoided by using computer programmes 
to support manoeuvring decisions by the navigator, based on 
AI, game theory and optimisation methods. When educating 
students as future officers for sea-going vessels, computer 
simulations or programmes should be included that take 
into consideration both the subjectivity of the navigator 
when making the final manoeuvring decision and the 
characteristics of the real and often complex navigational 
situation at sea.

The basic criterion used to ensure the quality of ship 
steering is the safe movement of ships within a given area, 
and this is considered by the simulation algorithm in the 
form of limitations on the state of the steering process. 
Optimisation of this control task is achieved by minimising 
the changes needed to the cruise route in order to safely pass 
all encountered ships. Since most anti-collision manoeuvres 
are performed in practice by changing the course while 
maintaining a constant speed, this task is reduced to one of 
time-optimal control.

Hongguang and Yong [9] illustrate the danger of ship 
collisions, and show that it is possible to assign certain areas 
to each ship in the form of domains. These domains may 
have fixed or variable shapes depending on the collisional 
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risk, and an artificial neural network implemented in Matlab 
software can be used to generate these. Figure 2 shows four 
types of ship domains, for which values are assigned based 
on the dimensions and speed of the ship and the safe distance 
at which other ships should be passed under real visibility 
conditions at sea.

As described in [9], the domains used for the ships may 
be in the form of a circle, a hexagon, an ellipse or a parabola; 
the choice depends on the relative speed of other passing 
ships, and can be changed based on the responses from an 
appropriately designed neural network that assesses the level 
of collision risk.

Fig. 2. Shapes of neural encountered ships domains: Dsafe – safe distance,  
Bd – dynamic length of the ship, Ld – dynamic beam of the ship, Vs –speed of 

met s ship, Ts,min - minimum time to approach with s met ship.

The neural network is characterised by six input quantities 
u that describe the current collision situation, and which are 
gathered from measuring devices such as radar, logs, and 
gyrocompasses. These are combined to form a single output 
quantity r that represents the risk of collision:
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This leads to the following equation:

 �� � ���� ���� � �����  (4)

where A are the activation functions of the neural network 
layers; ri and rei are the real and expected network responses; 
Σ is a mathematical measurement of the neural network 
learning processes; and i is the time parameter.

Figure 3 shows the structure of a neural network with 
three layers: the input and hidden layers have activation 
functions with a digressional nature and the output layers 
have sigmoidal activation functions.

Fig. 3. Neural network for generating ship domains: Wil –weight factors of the 
input layer; Whl –weight factors of the hidden layer; Wol –weight factors of 
the output layer; Ail –activation functions of the input layer; Ahl –activation 
functions of the hidden layer; Aol –activation function of the output layer.

When mapping current navigational situations using a 
neural network, a backpropagation error algorithm with 
comprehensive learning and moment indicators is used. The 
data needed for this learning process were prepared using an 
ARPA system simulator by 285 navigators.

The ship’s dynamics can be described by the state equations 
in discrete form:
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where:
(x0, y0) are the coordinates of the ship’s position, ψ is the 

ship’s course,  is the angular turning speed,  is the  
angular acceleration of the ship, V is the ship’s speed,  
is its acceleration,  is the change in the acceleration, α is 
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the rudder angle, n is the rotational speed of the screw 
propeller, (k1, k2, k3) are proportionality parameters, and 
(T1, T2, T3) are the time parameters of the dynamic model.

Determining the optimal route for the ship can be treated 
as a multi-stage decision-making process, and can be solved 
using Bellman’s dynamic programming method. We use a 
quality criterion Q, which represents the smallest extension to 
the voyage route that is necessary to safely pass encountered 
ships, leading to time-optimal steering while matching the 
speed of the other ships:

 ���� �� � � ��� � � � �� � ����
��
�

��
�    (6)

Bellman’s method defines the principle of optimality, 
stating the optimal strategy characterises that whatever the 
initial state or steering may be, the remaining controls must 
form the optimal strategy from the point of view of the state 
resulting from the first control:
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The time required to reach the k-th stage can be determined 
as follows:
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It is results from this how calculations utilising this strategy 
are typically started from the last stage, and afterwards the 
procedure goes towards the first. According to Bellman’s 
theorem [2], the collision avoidance procedure meets the 
conditions of duality, and according to this principle, the 
optimal trajectory for a ship in a collision situation can also 
be determined using the optimisation principle, starting with 
the calculation of the first stage before coordinated towards 
the last stage, as illustrated in Figure 4.

Fig. 4. Multi-stage decision-making process involving dynamic programming of 
the optimal voyage route, in which the domains of passed ships are mapped.

The navigation situation in Kattegat Strait is shown in 
Figure 5, and was used in simulation tests of the safe ship 
control algorithm, as recorded in the ARPA anti-collision 
system and installed on the research-training vessel.

Fig. 5. Navigational situation affecting the movement of a ship between 
seventeen passing vessels.
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Figures 6 and 7 show the neuro-optimal safe trajectories for 
ships under conditions of good and restricted visibility, which 
were processed using a programme implemented in Matlab.

Figure 6. Results of a computer simulation of the neuro-optimal safety of a 
ship’s trajectory and control sequence under good visibility conditions at sea for 

Ds = 0.5 nm, with circular and hexagonal domains, Qmin = 2678 s: (a) – safe 
trajectory of own ship, (b) – changes in the rudder angle, (c) – changes in the 

rotational speed of the propeller.

Figure 7. Computer simulation results for the neuro-optimal safety of a ship’s 
trajectory and control sequence under conditions of restricted visibility at sea 
for Ds = 1.5 nm, with circular domains, Qmin = 4033 s: (a) – safe trajectory of 
own ship, (b) – changes in the rudder angle, (c) – changes in the rotational 

speed of the propeller.

COMPUTER SIMULATION OF A GAME-OPTIMAL SAFE 
TRAJECTORY THAT CONSIDERS THE UNCERTAINTY 
IN THE NAVIGATIONAL SITUATION 

According to Lisowski [15], Song [23], Szlapczynska et al. 
[25] and Wang [26], the definition of the collision avoidance 
problem may be obvious, ignoring data sensitivity which may 
result from external elements dictated by climatic conditions 
and the state of the ocean, insufficient knowledge concerning 
other ships and imprecise proposals of international conflict 
of law rules (COLREGs).
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The first approach, which involves using the theory of 
differential games in steering as described by Reddy et al. 
[21], allows for control of the ship to be considered under 
conditions of uncertainty in navigational situations.

Single procedure models have been helpful in training 
students as future seagoing officers and allowing for the 
selection of algorithms for safe ship control in collision 
situations. For the practical synthesis of control algorithms, 
the positional and matrix game models presented by Sanchez-
Soriano [22] can be used.

The model that is closest to real situations is the matrix 
game model, which uses a risk matrix of ship collisions to 
identify various manoeuvring strategies in terms of changing 
courses or speeds.

The control variables of the ship are represented by the 
course ψ and the speed V, while for s met ship by course ys 
and speed Vs. The state variables for the ship are represented 
by the risk of collision rs, while for the met ship by distance 
Ds and bearing Ns.

The risk of collision with the s-th ship encountered, rs, is 
a relative assessment of the current situation of the approach 
characterised by the quantities Ds,min and Ts,min, compared to 
the expected safe situation characterised by the previously 
adopted safe values of Dsafe and Tsafe.

In most real control processes, the matrix game does not 
reach the saddle point, and does not guarantee balance when 
used in pure object strategies. The approximate solution of the 
real game, according to Osborne [20], constitutes a component 
of the mixed strategy, which expresses the probability 
distribution ps of the players’ pure strategies.

The optimal game control of the ship is the strategy of the 
highest probability to use is as follows: 

������ � �� ����
�������

��

� (9)

where:
σ0 – single strategies for controlling the ship’s movement to 

avoid collisions; in game theory, these are called ‘pure 
strategies’,

σs – single strategies for controlling the movement of the s-th 
ship that is cooperating to avoid collisions or scenarios 
leading to collisions for various reasons; in game theory, 
these are called ‘pure strategies’.

In a non-cooperative game, the quality index Q for optimal 
ship control can be formulated as follows:

�������� ��� � ����� ����
 �� ���� ���  (10)

However, in a cooperative game, this can be expressed 
as follows:

������ ��� � ����� ����� ������ ��� (11)   

Our computer simulation of cooperative and non-
cooperative game control algorithms was implemented in 
Matlab for the navigational situation illustrated in Figure 5.

Figures 8 and 9 show the optimal safe voyage routes under 
good and restricted shipping conditions, respectively, for 
cooperation and no cooperation between ships in terms of 
avoiding collisions.

Fig. 8. Game-optimal safe ship trajectories in a computer simulation of 
navigational in good shipping conditions for Ds = 0.5 nm: (a) in a cooperative 

matrix game, Qmin = 3312 s; and (b) in a non-cooperative matrix game,  
Qmin = 3660 s. 
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Fig. 9. Game-optimal safe ship trajectories in a computer simulation of 
navigation with restricted shipping conditions for Ds = 1.5 nm: (a) in 

a cooperative matrix game, Qmin = 3990 s; and (b) in a non-cooperative matrix 
game, Qmin = 4896 s.

CONCLUSIONS

An analysis of our research results in an effort to determine 
a safe and optimal route for a ship based on the use of selected 
computational intelligence methods allows us to draw the 
following conclusions.

In terms of calculating the neuro-optimal safe trajectory, 
the use of ARPA radar to identify object movement 
parameters allowed us to develop an algorithm to support 
the navigator in determining a safe trajectory, as a sequence 
of changes in the course and speed of the ship. Representing 
the movements of encountered ships in the form of moving 

neural domains of variable size, depending on the distance 
and time between approaching ships, allowed us to take into 
account the subjectivity of the navigator when assessing 
the risk of collision. The use of several hundred navigator 
officers to teach an artificial neural network allowed the 
computational algorithm to interpret the domain in which 
there is a danger of encountering ships better than if only a 
single experienced navigator had been used. An analysis of 
the possible domain shapes shows that they can be adapted 
to open or restricted waters. The node density in the dynamic 
programming trajectory of the ship is a compromise between 
calculation time and ship-route accuracy.

When calculating the game-optimal safe trajectory, our 
algorithm takes into account both the COLREG rules when 
starting the game and the dynamics of the ships, in the form 
of the advance manoeuvring time, their degree of cooperation 
and the end game when the risk of collision becomes zero. A 
new definition of ship collision risk was also presented here 
based on two assessments of the same navigational situation: 
the real situation regarding the proximity of objects, and the 
safe situation as determined by the reference parameters.

This work does not cover all of the issues associated 
with the safe management of the movement of ships at sea. 
Subsequent studies will include an analysis of the sensitivity 
of safe ship control to inaccurate information from navigation 
devices, changes in the parameters of the ship dynamics, and 
the impact of hydrometeorological disturbances.

Future papers on computational intelligence in marine 
control engineering education should focus on additional 
groups of ship officers, such as mechanics and electricians.
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