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ABSTRACT

Based on data from seven different ship types, this paper provides mathematical relationships that allow us to estimate 
the main and auxiliary engine power of new ships. With these mathematical relationships we can estimate the power 
of the engine based on the ship’s length (L), gross tonnage (GT) and age. We developed these approaches using simple 
linear regression, polynomial regression, K-nearest neighbours (KNN) regression and gradient boosting machine 
(GBM) regression algorithms. The relationships presented here have a practical application: during the pre-parametric 
design of new ships, our mathematical relationships can be used to estimate the power of the engines so that more 
environmentally friendly ships may be built. In addition, with the machine learning methodology, the prediction of the 
main engine (ME) and auxiliary engine (AE) powers used in the numerical calculation of ship-based emissions provides 
data for researchers working on emission calculations. We conclude that the GBM regression algorithm provides more 
accurate solutions to estimate the main and auxiliary engine power of a ship than other algorithms used in the study.
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INTRODUCTION

Machine learning is a system that investigates the work 
and construction of algorithms that can make predictions 
by making inferences using mathematical and statistical 
methods from the available data. In machine learning, which 
is a sub-discipline of artificial intelligence, the algorithms 
work by building a model to make predictions from sample 
inputs with the help of computers and software.

The effects of ship-based exhaust emissions include 
reduction in the air quality, especially in a country’s inland 
waters, the straits, and port areas. These emissions and 
greenhouse gases are also among the major factors causing 
global climate change. Two approaches stand out in the 
literature to estimate emissions from ships. One is the top-
down approach, which is based on the fuel consumed by the 
ship, and the other is the bottom-up approach, which uses 
the ship’s main and auxiliary machinery forces, based on the 
manoeuvre, cruise, and port activities.

Looking at the research on the application of machine 
learning in the maritime industry in the literature, Ekmekçioğlu 
et al. [1] calculated the exhaust emissions from ships arriving 
at four major ports of Turkey for a year using real numerical 
data such as the main engine power and speed, auxiliary engine 
power, and the duration of stay in port. In his study, Trozzi [2] 
proposed a function based on the ship type and gross tonnage 
in calculation of the ship’s main engine power. He used non-
linear regression for ship-based emission calculation. He also 
proposed the estimated average vessel ratios of the auxiliary 
engines / main engines by ship type. Yan et al. [3] proposed 
a two-stage fuel consumption prediction and fuel reduction 
model for a dry bulk ship. In the first stage, they created a fuel 
consumption prediction model that takes into account the 
ship’s sailing speed, cargo weight, sea and weather conditions 
by using the random forest regression. In the second stage, they 
developed a speed optimisation model based on the prediction 
model proposed in the first stage. They concluded that the 
proposed model could reduce the ship’s fuel consumption 
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by 2–7% and this reduction would also lead to lower CO2 
emissions. Huang et al. [4] calculated ship exhaust emissions 
using the activity-based STEAM (Ship Traffic Emissions 
Assessment Model) method. They used machine learning 
(80% training set, 20% test set) and the polynomial regression 
method to calculate the value of the unknown main engine 
power according to the ship’s dimensions. Tran [5] emphasised 
the effect of fuel consumption on CO2 emissions and used 
fuzzy clustering to examine the effect of loading a bulk carrier, 
which he took as a case study, on the fuel consumption. He 
concluded that the novel methodology showed that machine 
learning could be used to make decisions for the optimum 
loading of the ship, in the study where parameters such as 
wind speed, wave height, ship speed, distance travelled, and 
shaft speed were analysed.

In their studies, Yan et al. [6] applied big data analysis by 
considering environmental factors to optimise the engine 
speeds of inland ships. They proposed a distributed parallel 
k-means analysis for clustering environmental factors into 
multiple groups and a model to optimise ships’ energy 
efficiency. They conducted a case study to verify their method 
on the Yangtze River, and concluded that the method they 
developed could increase ships’ energy conservation and 
emission reduction. Cepowski [7] used the ship’s speed and 
deadweight or TEU capacity properties to estimate the total 
machine power of bulk carriers and container vessels. Requia 
et al. [8] estimated and compared PM2.5 components with 
ordinary kriging (OK) interpolation, hybrid interpolation 
and machine learning (forest-based regression) methods. They 
concluded that the forest model offers the best performance 
because the R2 value is higher than 0.7 for most of the particle 
components. They stated that their results may be useful for 
more accurate prediction of PM2.5 components in the air. 
Uyanık et al. [9] performed the fuel consumption optimisation 
of a container ship with machine learning using multiple 
linear regression, ridge and lasso regression, support  vector 
regression, tree-based algorithms and boosting algorithms. 
They compared the prediction models in their studies and 
they found that parameters such as the main engine rpm, 
cylinder values, scavenge air and shaft indicators are highly 
correlated with fuel consumption, and stated that they found 
the most accurate estimate with multiple regression and ridge 
regression. Barua et al. [10] explored international freight 
transportation management through machine learning. They 
discussed how it is applied in the fields of maritime transport, 
air cargo and intermodal transport using different machine 
learning methods such as demand forecasting, operation 
and asset maintenance, vehicle trajectory and on-time 
performance prediction. They proposed four directions 
for future research. Peng et al. [11] estimated the energy 
consumption of ships in China’s Jingtang port and discussed 
their strategies to reduce energy consumption and proposed 
prediction models. They used the gradient boosting regression, 
random forest regression, BP network, linear regression and 
K-nearest neighbour regression machine learning models and 
analysed 15 features that have an impact on ships’ energy 
consumption as input. They concluded that net tonnage, 

deadweight tonnage, actual weight and efficiency of facilities 
are the four most important features to predict the energy 
consumption of the ships. Jeong et al. [12] made predictions 
of time for shipbuilding production processes using machine 
learning technology. In their study, they analysed data with 
the R and Phthon programs, they created prediction models 
and confirmed these models using criteria such as the mean 
absolute percent error and root mean squared logarithmic 
error. Gkerekos et al. [13] investigated the effectiveness of 
different multiple regression algorithms to estimate ships’ 
main engine fuel oil consumption. They considered the 
noon reports and automatic data logging and monitoring 
systems for data collection. They compared machine learning 
regression algorithms such as linear regression, decision tree 
regressors, random forest regressors, extra trees regressors, 
support vector regressors, K-nearest neighbours, artificial 
neural networks and ensemble methods, and stated that 
the best performance was shown by extra trees regressors 
and random forest regressors. Jonquais and Krempl [14] 
used machine learning to make predictions about shipping 
times between South East Asia and North America. By using 
the random forest algorithm and creating four models to 
produce estimates, they created a tool that gives superior 
results over traditional methods. Bodunov et al. [15] estimated 
a destination and an estimated time of arrival (ETA) for 
maritime traffic using a machine learning method using 
geo-spatial data, random forest, gradient boosting decision 
trees, XGBoost trees and extremely randomised trees models 
for destination prediction; they used feed forward neural 
networks for arrival time estimation. They achieved 97% 
accuracy in the destination estimate and 90% accuracy in the 
ETA estimate. In their study, Yuan and Nian [16] emphasised 
the importance of improving ship energy efficiency and 
reducing ship emissions, and they developed a Gaussian 
process metamodel to predict ships’ fuel consumption in 
different scenarios, taking into account the operating and 
weather conditions such as speed, trim, wind and wave effects. 
With the case study, they demonstrated the accuracy and 
effectiveness of using the Gaussian process metamodel for 
the prediction of ships’ energy consumption. Farag and Ölçer 
[17] stated that fuel consumption is a very important tool 
in reducing greenhouse gas emissions. They developed an 
estimation model for the fuel consumption of ships using 
artificial neural network and multiple regression techniques. 
Finally, they used the model they developed to estimate the 
fuel savings that one ship can make during a voyage. Bui-Duy 
and Vu-Thi-Minh [18] created a deep-based fuel consumption 
model for the shipping route selection of container ships in 
Asia. They offered an idea that helped choose the optimal 
route to minimise fuel costs. They stated that the model, 
which has five input variables, namely average velocity, sailing 
time, ship capacity, wind speed and wind direction, has an 
accuracy of close to 95%. Hao Cui et al. [19] proposed a new 
machine-learning-based ship design optimisation approach. 
They used a multi-objective particle swarm optimisation 
method, multi-agent system and CAE software to build an 
optimisation system. They conducted a dry cargo vessel design 
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optimisation as a case study to evaluate the conformity of 
the method they created to the real world. Peker et al. [20] 
created a model that can predict the heating and cooling 
load of houses by using machine learning algorithms with 
a data set with eight input and two output values. They used 
and compared machine learning algorithms such as support 
vector machine regression, linear regression, random forest 
regression and nearest neighbour regression, and concluded 
that the best predictive success was achieved by the random 
forest regression algorithm. In this study, the ship length, 
gross tonnage, and age data were weak in predicting the 
ship’s main power. With KNN regression, the main engine 
power can be successfully estimated, but the most successful 

algorithm was the GBM algorithm. Similarly, linear and 
polynomial regression is not sufficient for predicting auxiliary 
machine power. While KNN regression received a pass grade, 
the GBM regression algorithm predicted quite successfully.

AIM OF RESEARCH

Previous studies were examined according to their 
methods, inputs, outputs and R2 values and the similarities 
and differences between this study and other articles were 
revealed. The comparison with previous studies is shown 
in Table 1.

Tab. 1. Comparison with previous studies.

Study Method Inputs Outputs R2

This study Linear regression GRT, length, age ME power 0.68

This study Linear regression ME Power, length, age AE power 0.68

This study Polynomial regression GRT, length, age ME power 0.8

This study Polynomial regression ME power, length, age AE power 0.69

This study K-nearest neighbour regression GRT, length, age ME power 0.86

This study K-nearest neighbour regression ME power, length, age AE power 0.74

This study Gradient boosting regression GRT, length, age ME power 0.95

This study Gradient boosting regression ME power, length, age AE power 0.93

Yan et al. [3] Random forest regression Sailing speed, cargo weight, weather conditions Fuel consumption 0.72

Huang et al. [4] Polynomial regression Cargo ships, length, breadth ME power 0.91

Huang et al. [4] Polynomial regression Tankers, length, breadth ME power 0.87

Requia et al. [8] Forest model 25 predictors representing land use PM2.5 emission 0.93

Peng et al. [11] Random forest regression 15 features consisting of inherent properties of 
container ships and external features of ports Ship energy consumption 0.94

Peng et al. [11] Linear regression 15 features consisting of inherent properties of 
container ships and external features of ports Ship energy consumption 0.77

Peng et al. [11] K-nearest neighbour regression 15 features consisting of inherent properties of 
container ships and external features of ports Ship energy consumption 0.62

Peng et al. [11] Gradient boosting regression 15 features consisting of inherent properties of 
container ships and external features of ports Ship energy consumption 0.91

Gkerekos et al. [13] Random forest regression Load conditions, weather conditions, speed, 
sailing distance, draft Ship ME fuel consumption 0.87

Gkerekos et al. [13] K-nearest neighbour regression Load conditions, weather conditions, speed, 
sailing distance, draft Ship ME fuel consumption 0.78

Gkerekos et al. [13] Boosting Load conditions, weather conditions, speed, 
sailing distance, draft Ship ME fuel consumption 0.90

Jonquais and Krempl [14] Random forest regression Carrier, shipper, route Shipping times for 
departure 0.88

Jonquais and Krempl [14] Neural networks model Carrier, shipper, route Shipping times for 
departure 0.85

Farag and Ölçer [17] Artificial neural network Speed, depth, wind speed, wave parameters, 
swell parameters, sea current Brake power 0.96

Farag and Ölçer [17] Artificial neural network Speed, depth, wind speed, wave parameters, 
swell parameters, sea current Fuel consumption 0.89
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In this study, we use different machine learning methods 
and comparisons in order to estimate the main and auxiliary 
engine powers of the ships, which are necessary for numerical 
calculation of the emissions of exhaust gas originating from 
the maritime sector.

MATERIALS AND METHOD

MODEL VALIDATION

The accuracy of the model’s predictions is calculated 
by comparing the actual power values of the main and 
auxiliary engine with the corresponding predicted values. 
Ten-fold cross-validation was applied to check the model 
performance. The dataset was randomly divided into 10 parts, 
train the model on 9 partitions and predict the properties of 
the remaining set. This process was repeated 10 times for each 
section. The prediction ability of the model is then evaluated 
as the average performance of the model in all repetitions. The 
root mean squared error (RMSE), mean absolute error (MAE), 
and R-squared (R2) were used to assess the performance of 
the developed regression models.

RMSE =               (1)

As shown above, yi and  respectively represent the actual 
power values and estimated power values. Since the aim of 
training the model is to reduce the difference between these 
two values as much as possible, the model with a small RMSE 
value was accepted as superior.

The MAE measures the average magnitude of errors in 
a series of estimates, regardless of their direction. It is the 
average of the absolute differences between the estimate and 
the actual observation that all individual differences have 
equal weight on the test sample. Its analytical expression is 
as follows:

MAE =  |yi – |              (2)

The R2 correlation coefficient is used to evaluate the 
performance of the models and is given as follows:

R2 = 1 –                (3)

 represents the mean value of yi. It is a measure showing 
how close each data point is to the regression line with the 
R2 value. It is always positive and between 0 and 1.

DATA SET

In this study, data containing information from 4037 
different ships were used. The dataset includes the ship type, 
gross tonnage, year of manufacture, length, and the main and 

auxiliary engine power for each ship. While 80% of these data 
of these ships are used to train the model, 20% of them are 
used for testing. Samples were taken from seven different ship 
types: chemical tanker, container, general cargo, LPG tanker, 
oil product tanker, Ro-Ro ship, and search and rescue ship. 
The gross tonnage of the ships varies between 74 and 162960. 
The oldest ship was produced in 1925, while the newest ship 
was built in 2018. The lengths of the ships were kept in a wide 
range from 18.25 m to 368 m. The main machine power and 
auxiliary machine power to be estimated vary in the ranges of 
147–72240 kW and 37–9600 kW, respectively. Table 2 provides 
statistical data on the ships.

DETERMINING THE INDEPENDENT VARIABLES

The separation of resistance components in terms of the 
scale effect and its first use in model–ship extrapolation was 
introduced by Froude. In this method, which is today called 
the Froude hypothesis, total resistance is divided into friction 
and residual resistance; the friction resistance is assumed to be 
equal to one equivalent plate resistance in the same area as the 
ship’s wet area, and the difference between the total resistance 
and friction resistance is defined as the residual resistance. 
There are various methods for calculating the ship’s total 
resistance and resistance components. CFD (computational 
fluid dynamics), panel methods, other numerical techniques, 
model experiments, empirical and statistical approaches are 
the main methods used in calculation. It is an undeniable 
fact that the total resistance of ships has improved over time 
with the research and development studies of researchers on 
these methods.

Also, the number of ship gas emissions is estimated to 
be around 450, but the vast majority of these are at a level 
that can be neglected in terms of both quantity and impact. 
However, carbon dioxide (CO2), carbon monoxide (CO), 
nitrogen oxides (NOx), sulphur oxides (SOx), and particulate 
matter (PM) are the most common gas emissions and have 
the greatest impact on both human health and the ecosystem. 
MARPOL (International Convention for the Prevention of 
Pollution from Ships) is reducing the limits of these harmful 
emissions to ever more demanding levels. Although various 
internal combustion engine technologies have been developed 
to overcome these difficult constraints, it is difficult to do so 
unless there are efficient ships. For this reason, it would not be 
a correct approach to ignore the developments that occur over 
time while estimating the main engine power of the ships. 

Tab. 2. Statistical data of the data set

Minimum 1St. 
Qu. Median Mean 3rd. 

Qu Maximum

Gross 
tonnage 74 3505 9927 21654 29982 162960

Length 18.28 106.00 141.00 154.86 189.99 368.00

ME 
power 147 1920 5400 8839 10500 72240

AE 
power 37 253 500 738 910 9600
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Also, the NOx emission factors used in the calculations vary 
according to the shipbuilding year. As a matter of fact, when 
looking at the results of the relative influence of the model 
created with the GBM algorithm, it is seen that the age of the 
ship has an effect amounting to 21.86%. Fig. 1 contains the 
result of the relative influence of the independent variables.

The admiralty coefficient formula is one effective empirical 
expression that can be used to predict the power curves of 
ships and is expressed as in Eq. (4). Ships with a similar 
hull form, speed and displacement have the same admiralty 
coefficient.

PE =                   (4)

In Eq. (4), Δ, V, PE and C are the displacement, velocity, 
effective power and admiralty coefficient respectively. Table 3 
contains the admiralty coefficient suggested by Schneekluth 
and Bertram for different ships [21]. When Table 3 is examined, 
the effect of the ship type on the power can be seen clearly. 
After the effective efficiency is calculated, the main engine 
power can be calculated using the efficiency of the gear box, 
the mechanical efficiency of the shaft line, efficiency of the 
hull, rotation relative efficiency, and open water efficiency 
of the propeller.

It is seen that two important features of ships have emerged 
in order to predict the main engine power in ships. The change 
in the admiralty coefficient of different ship types indicates 
that ships have different power requirements in relation to 

their job description. In the study, an independent variable 
representing the ship type was thus needed to estimate the 
main engine power. For this reason, it was investigated 
whether the gross tonnage can represent the ship type and, 
for this, the gross tonnage length curves were examined 
depending on the ship type. In Fig. 2, the gross tonnage 
length distributions of different types of ships in the data 
set are given. In addition, the curves where the gross tonnage 
changes depending on the length for the same ship type are 
shown in Fig. 3, using the available data.

Fig. 3 shows that the gross tonnage value shows different 
trends for different ship types. There are also supporting 
empirical statements showing that the gross tonnage and 
length values of the ships in the data set used differ according 
to the ship types. Similar to the admiralty coefficient, the 
empirical statement in Eq. (5) can be used to estimate the 
gross tonnage. Here, the gross tonnage expression is given 
as a function of CN (cubic number). The symbol k indicates 
the coefficient, which varies according to the ship type. In 
Eq. (6), the explicit expression of CN is given and the symbols 
Lpp, B, and D represent the values of the length between the 
perpendiculars, beam and depth respectively.

GT = k. CN                      (5)

CN = Lpp. B. D                    (6)

When the friction resistance affecting the ships is examined, 
it is seen that it basically depends on the friction coefficient, 
the density of the fluid it is in, the wet surface area and the 
square of the speed. Among these variables, the square of the 

Fig. 1. Relative influence of the independent variables

Fig. 2. Gross tonnage and length distributions of different types of ships

Fig. 3. Gross tonnage and length curves of different types of ships

Tab. 3. Admiralty coefficient for different ship types [21]

Ship type Admiralty constant

General cargo ship 400±600

Bulker and tanker 600±750

Reefer 550±700

Feeder ship 350±500

Warship 150
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wet surface area and velocity is directly related to the ship’s 
design parameters. The wet surface area, defined as the area 
of the surface of the ship in contact with water, is one of the 
important parameters of the resistance and power calculation. 
Considering that the wet surface area is also a function of the 
ship’s length, this length is also used as an independent variable.

It would not be right to think that the power of the ship’s 
auxiliary engines is in a linear relationship depending on the 
ship’s main engine power. However, the ship is not completely 
independent from the main engine power. While calculating 
the power of auxiliary machinery, many variables such as 
crew needs and the power requirements of the control systems 
should be taken into consideration. In this study, the main 
engine power and ship length were used as an indicator of 
the size and power needs of the ship to estimate the auxiliary 
engine power. In addition, the gross tonnage was used to 
symbolise the special needs of the ship type.

LINEAR REGRESSION

Linear regression is a method used to model the connection 
between one or more independent variables and a dependent 
variable. The main purpose of linear regression is to obtain the 
function of the relationship between parameters. Creating an 
appropriate model in the learning process signifies choosing 
the most appropriate parameters for the hypothesis function 
by using the training set. The hypothesis function may depend 
on one or more parameters. Provided that a model based 
on a single parameter is constructed, it is named as single 
regression; if it is constructed with two or more parameters, 
it is named as multiple regression. Single linear regression 
is formulated as in Eq. (7).

y = β0 + β1x + ε                  (7)

In Eq. (7), y refers to the value of the dependent variable, 
x refers to the value of the independent variable, β0 is the 
population’s y intercept, β1 the slope of the population 
regression line and ε a random error term. Similarly, multiple 
linear regression is expressed as in Eq. (8).

y = β0 + β1x + .... + βkxk + ε          (8)

As distinct from Eq. (7), k represents the number of 
independent values. In multiple linear regression analysis, the 
contribution of some of the modelled independent variables 
to the model may be insignificant. Therefore, it is necessary 
to identify the independent variables that will explain the 
dependent variable in the most appropriate way, and remove 
the insignificant variables from the model. This process is 
called “variable selection”.

Various methods have been developed for independent 
variable selection. These can be examined as three main 
groups.

• Forward selection
• Backward elimination
• Standard stepwise regression

For selection of the variables for main engine and auxiliary 
engine power estimates, the forward selection, backward 
elimination and standard stepwise selection methods have 
been applied to determine the contribution of our variables 
to the model.

According to the simple correlation matrix between the 
ME power dependent variable and the other independent 
variables for the ME, the highest correlation coefficient was 
found. L and GT were the highest independent correlations 
with ME power. The degree of significance of all independent 
variables p was examined separately. Then, while the L and GT 
variables are constant, it is necessary to find the independent 
variable with the highest partial correlation with ME power. 
For this reason, the age variable is a candidate to enter the 
model. Since the significance level of the L, GT and age 
variables is p <0.05, these variables are included in the model.

According to the simple linear correlation matrix between 
the AE power dependent variable and other independent 
variables for the AE, the highest correlation coefficient was 
found. The independent variables with the highest correlation 
with AE power were ME power, L, and GT, respectively. The 
degree of significance of all independent variables p was 
examined separately. The ME power, L and age variables are 
included in the model because their p value is less than 0.05. 
The GT variable was removed from the model because its p 
value is greater than 0.05.

Within the scope of this study, Model.ME.1 was created to 
estimate the ship’s main engine power. While constructing 
the model, the length, gross tonnage and age of the ship were 
used as independent variables. Moreover, the ship’s auxiliary 
engine power was estimated by linear regression, using the 
main engine power, length and age. The model thus created 
was named as Model.AE.1. Table 4 contains the errors from 
the linear model’s train and test sets.

POLYNOMIAL REGRESSION

Independent variables are not continuously required to 
be in a linear relationship with the dependent variable. As 
a consequence, the predictive power of the linear model will 
weaken. In such circumstances, polynomial regression is 
used. For multiple exponents of the argument, the polynomial 
model is created as in Eq. (9).

y = β0 + β1x + β2x
2 +.... + βpx

p + ε        (9)

In the equation, expression p refers to the polynomial 
degree. Polynomial regression can be applied as single or 
multiple regression as in linear regression.

Tab. 4. Error values of the linear model

Train Test

RMSE R2 MAE RMSE R2 MAE

Model.
ME.1 6592.29 0.688 4396.62 6257.2 0.684 4143.66

Model.
AE.1 448.99 0.650 251.847 430.77 0.679 246.48
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In this part of the study, the answer to the question of which 
polynomial levels should be created using the data in the 
whole data set without any test–train separation was sought. 
Polynomial forces between 1 and 5 were investigated for each 

predictor in Model.ME.1. Average squared error values were 
examined for each polynomial force and, according to the 
results, the forces of the estimators of the final model were 
decided.

Fig. 4. Forces of independent variables

Main Engine Power Auxiliary Engine Power
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i, j, and k represent the polynomial degrees of the 
independent variables (length, gross tonnage, and age), 
respectively. When Fig. 4 is examined, a 2nd degree polynomial 
is suitable for length, 4th degree for gross tonnage and 2nd 
degree for age. With reference to these results, Model.ME.2 
was created to estimate the ship’s main engine power. Similar 
steps were used to estimate the auxiliary engine power, for 
which Model.AE.2 was created. As a consequence of the 
applied operations, the force of the main engine power was 5, 
and the force of the length and age was 4 and 5, respectively. 
Fig. 4 shows the average square error obtained for various 
forces of the independent variables. Table 5 contains the errors 
from the polynomial model’s train and test sets.

K-NEAREST NEIGHBOURS – REGRESSION

The K-nearest neighbours regression method is a simple 
algorithm that stores all available states and predicts the 
numerical target based on distance similarity. KNN was first 
used as a nonparametric technique in statistical prediction 
and pattern recognition in the early 1970s.

Contrary to alternative supervised learning algorithms, 
KNN does not have a training stage. With KNN, principally 
the closest points to the new point are searched. K represents 
the number of the closest neighbours of the unknown point. 
We select the amount K of the algorithm (usually an odd 
number) to estimate the results.

The KNN algorithm is predicted by the majority vote of its 
neighbours. The closest neighbours are found with a distance 
function. Eq. (10), (11), and (12) contain distance functions 
that are frequently used for regression. 

Euclidean                                (10)

Manhattan                                    (11)

Minkowski                          (12)

The three distance functions above can only be used in 
continuous variables. To choose the most suitable value for 
K, the data should first be examined. In general, a large K 
value is more sensitive as it reduces overall noise, although 
no guarantee is granted. Cross-validation is another way to 
retrospectively determine a good K value, using an independent 
dataset to validate the value.

In this part of the study, the number of neighbours was 
determined. Model.ME.3 was designed to estimate the ship’s 
main engine power and Model.AE.3 to estimate the auxiliary 
engine power. The arguments used to estimate the outputs 
were not changed. To determine the number of neighbours, 
numbers between 1 and 10 were examined and determined 
according to the RMSE values. Fig. 5 shows the RMSE values 
of the neighbour numbers.

When Fig. 5 is examined, the minimum error value for 
Model.ME.3 is obtained when the number of neighbours is 1. 
On the other hand, for Model.AE.3, the neighbour number 
should be 4. The Euclidean distance was used for both models. 
After determining the number of neighbours, the RMSE, 
R2 and MAE errors were calculated for the test and train sets. 
Table 6 contains these error values.

Tab. 5. Error values of the polynomial model

Tab. 6. Error values of the KNN model

Fig. 5. RMSE values of neighbour numbers

Train Test

RMSE R2 MAE RMSE R2 MAE

Model.
ME.2 5174.01 0.807 3112.51 5006.42 0.800 2955.65

Model.
AE.2 431.59 0.676 232.28 421.22 0.691 238.55

Train Test

RMSE R2 MAE RMSE R2 MAE

Model.
ME.3 119.46 0.999 11.36 4245.57 0.856 1372.19

Model.
AE.3 350.22 0.787 173.18 385.99 0.739 220.57
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GRADIENT BOOSTING MACHINE (GBM)

The gradient boosting machine (GBM) is a nonparametric 
regression technique that combines a regression tree with the 
gradient boosting algorithm. Unlike the regression method, 
which basically produces a single best model, the GBM model 
adaptively combines multiple classification and regression tree 
models using the gradient boosting technique to optimise 
performance. That is, unlike standard regression methods 
that produce a single predictive model, it fits many simple 
models and combines them in prediction, thereby increasing 
the predictive performance. In addition, it does not need 
any assumptions about the functional relationship between 
dependent and independent variables. GBM uses the gradient 
boost algorithm from Boost algorithms. 

This method requires the most training time. Besides, 
a considerable amount of parameters need to be determined 
from the outset. Initially, Model.ME.4 was designed to 
estimate the ship’s main engine power, and Model.AE.4 
was created to estimate the power of the auxiliary engine. 
Interaction depth, n.trees, shrinkage and n.minobsinnode 
variables were determined by tuning. The interaction depth 1 

through 7 in 2 increments, n.trees between 1000 and 10,000 
with 1000 increments, the shrinkage value as 0.01 or 0.1, 
and the n. minobsinnode value between 10 and 20 were 
searched. The optimum values of n.trees = 0000, interaction 
depth = 7, shrinkage value = 0.01 and n.minobsinnode = 10 
were obtained for Model.ME.4. The final values used for 
Model.AE.4 were n.trees = 2000, interaction depth = 7, 
shrinkage = 0.01 and n.minobsinnode = 11. Fig. 6 shows the 
effect of these variables on the RMSE for the main engine 
and Fig. 7 shows the effect of these variables on the RMSE 
for the auxiliary engine.

The error rates for the final models created after the tuning 
process are listed in Table 7.

Tab. 7. Error values of the GBM model

Fig. 7. Effects of variables on RMSE for AE

Fig. 6. Effects of variables on RMSE for ME

Train Test

RMSE R2 MAE RMSE R2 MAE

Model.
ME.4 1135.29 0.990 714.19 2562.01 0.947 1246.5

Model.
AE.4 201.11 0.931 118.42 248.20 0.926 118.05



POLISH MARITIME RESEARCH, No 1/202192

RESULTS AND DISCUSSION

Based on the length, gross tonnage, and age data from 4037 
different ships, this study estimated the main and auxiliary 
engine power values. As a predictor, four different regression 
models, linear, polynomial, KNN and GBM, were studied. 
The models were trained on 80% of the data set and tested 
in 20%. The performance of the models was evaluated with 
ten-fold cross-validation and the RMSE, MAE and R2 errors 
were calculated and interpreted.

In Fig. 8, a  comparison chart of the coefficients of 
determination (R2) of the regression algorithms is given. The 
fact that the coefficient of determination is close to 1 indicates 
that the success of the algorithm is high. As a result of the 
study, the best regression algorithm for main engine power 
prediction is the gradient boosting machine with an R2 value of 
0.947. Among the models created for estimating the auxiliary 
motor power, the best performing model was again the gradient 
boosting machine and its R2 value is 0.926.

 

In Fig. 9, the comparison chart of the mean absolute error 
(MAE) values of the regression algorithms is given. The fact 
that the mean absolute error value is close to 0 indicates that 
the success of the algorithm is high.

The comparison graph of the root mean square error 
(RMSE) values of the regression algorithms is given in Fig. 
10. Here too, it can be understood from the fact that the 
average square error value is close to 0 that the success of 
the algorithm is high.

The graphs showing the main and auxiliary engine power 
values estimated by the algorithms and the actual index values 
in the test data are given in Fig. 11.

Residual analysis plays an important role in verifying the 
regression model. The residues are the difference between the 
estimated value and the actual value. Graphs representing 
the deviation of the estimated value from the actual value 
are shown in Fig. 12.

Fig. 12 shows that the linear and polynomial regression 
algorithms with a high error rate now move away from the 
zero line. On the other hand, the low error rates of the GBM 
and KNN algorithms are somewhat closer to the zero line. 

CONCLUSION

In this study, regression-based algorithms are used to 
estimate ships’ main and auxiliary machine powers. Four 
different regression algorithms, linear, polynomial, KNN, 
and GBM, have been designed. Each method requires data 
pre-processing, data distribution determination, regression 
and performance evaluation steps, which are important 
stages of machine learning. K-cross- validation validity, 
a hyperparameter frequently used in the literature, was used 
to compare the performance results of the machine learning 
methods. For KNN regression, the optimum neighbour 
numbers were searched from one to ten. In addition, as 
GBM regression, for the interaction depth, n.trees, shrinkage 
and n.minobsinnode parameters tuning was performed for 
four, ten, two, and ten different parameters, respectively. In 
the study of 4037 ship samples, the algorithm that can best 
estimate the power of both machines compared to R2, RMSE 
and MAE was found to be the gradient boosting machine. 
Although this method provides good results, the number of 
parameters to be determined from the outset and the training 

Fig. 8. Coefficients of determination of four models

Fig. 9. Mean absolute error values of four models

Fig. 10. Root mean squared error values of four models
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Fig. 11. Difference between target values and forecast values
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Fig. 12. Residuals

Main Engine Power Auxiliary Engine Power
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time proved to be more important as negative aspects of the 
method. However, the linear and polynomial regressions 
were not able to adapt to the data set. As a result, the GBM 
algorithm for estimating ships’ main and auxiliary machine 
powers is quite suitable. It showed good results in estimating 
both the main power and the auxiliary machine power. The 
basis for this method’s effectiveness is that the predictions 
are made in order, not independently.
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