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Abstract

Multi-energy hybrid ships are compatible with multiple forms of new energy, and have become one of the most important 
directions for future developments in this field. A propulsion inverter is an important component of a hybrid DC electrical 
system, and its reliability has great significance in terms of safe navigation of the ship. A fault diagnosis method based 
on one-dimensional convolutional neural network (CNN) is proposed that considers the mutual influence between an 
inverter fault and a limited ship power grid. A tiled voltage reduction method is used for one-to-one correspondence 
between the inverter output voltage and switching combinations, followed by a combination of a global average 
pooling layer and a fully connected layer to reduce the model overfitting problem. Finally, fault diagnosis is verified 
by a Softmax layer with good anti-interference performance and accuracy.
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introduction

Multi-energy hybrid ships can use both renewable sources 
of energy (wind, solar, etc.) and non-renewable energy (fossil 
fuels). In these ships, mechanical and electric propulsion is 
integrated through power coupling devices [1], which can 
not only save energy, reduce emissions, and meet the relevant 
requirements of International Maritime Organization (IMO), 
but also can effectively address the limitations of using a single 
energy supply. Hybrid power system ships initially used low-
voltage DC distribution networks, and are gradually being 
developed to use medium- and high-voltage DC distribution 
networks. The application of variable speed shaft generator 
sets can significantly reduce fuel consumption and pollution 

emissions [2]. In this configuration, the variable speed diesel 
generator sets convert mechanical power into electrical 
energy, and the alternating current (AC) energy generated 
by each generator set is converted into direct current (DC) 
energy through rectifiers and pooled into a common DC bus. 
The energy storage devices are also connected to the same 
grid through bi-directional converters. The propulsion motors 
are then powered by inverters from the DC bus to drive the 
propellers forward and in reverse, to achieve motion of the 
ship. Compared with the traditional AC distribution network, 
this approach has advantages such as occupying less space and 
volume, faster and safer addition and removal of generator 
sets, simpler access to the system for energy storage devices, 
and better power quality [3]. With the development of hybrid 
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ships towards green energy, integration, and larger scales [4], 
power semiconductor devices are becoming widely used. These 
operate on pure electric propulsion, with variable propulsion 
motor power that is capable of reaching approximately 80% 
of the generator sets capacity [5]. The increasing power of the 
inverters used for electric propulsion of the ships makes them 
more likely to fail and to cause accidents, meaning that it is 
important to detect and diagnose these faults.

A six-switch, two-level, three-phase voltage source (2L-
VSC) is a common topology for an electric propulsion inverter 
[6], and is a mature and reliable topology with a simple circuit 
structure and control strategy [7]. It mainly experiences short-
circuit faults (SCFs) and open-circuit faults (OCFs) in the 
power switching transistors [8]. All faults in power electronic 
circuits are difficult to detect [9], and the inverter is one of the 
most vulnerable devices in a ship’s DC distribution network 
[10]. Overloading, high temperatures, and incorrect drive 
signals can lead to SCFs, which occur within a very short 
time and are difficult to predict and diagnose. Research on 
the diagnosis of SCFs is scarce, and hardware protection is 
typically used [11], such as fast fuses for each transistor and 
inverters equipped with external current limiters to convert 
SCFs into OCFs. However, for high-power inverters, an 
approach based on fuse installation faces the problems of long 
protection times and an inability to protect the transistors 
from high transient electrical stress shocks [12], and the 
transistors may still be knocked out. Over-current limiters 
are the most effective and ideal methods of short-circuit 
protection for inverters, as they reduce the hazards generated 
by faults and limit the rate and capacity of a short-circuit 
current rise. They also makes it possible to detect, locate and 
isolate SCFs using algorithms [13], but suffer from problems 
such as voltage dips in fault situations. Hence, methods for 
the detection and diagnosis of OCFs in inverters are needed.

Fault diagnosis for inverters consists of two steps: the first 
is signal acquisition, in which sensors are used to obtain 
signals during operation, including the output voltage or 
current of the device, while the second is fault diagnosis 
and classification, in which suitable analysis and diagnosis 
methods are adopted to process the signals and to determine 
the condition of the device and the type and location of the 
fault. The inverter is usually allowed to continue working for 
a certain period under a power switching transistor OCF, 
and the propulsion motor can run for a short time, but the 
AC voltage and current output from the inverter is no longer 
balanced in this situation. If the inverter runs for a long time 
with the fault, the remaining power switching transistors will 
cause a secondary fault due to high current flow. Such faults 
should therefore be detected and located as soon as possible 
when they occur.

The ship’s DC distribution network consists of numerous 
electrical and power electronic devices, which are coupled 
and interact with each other. This distribution network is 
complex, with many nonlinear factors, and it is difficult to 
use traditional fault diagnosis methods to detect and locate 
inverter faults in the network in a timely manner. Innovative 
diagnosis methods are therefore needed to achieve rapid 

diagnosis and location of inverter faults. Modern fault 
diagnosis methods are usually based on analytical models, 
and may be signal-based or data-driven [14]. Analytical 
model-based methods rely on the construction of accurate 
mathematical models, and diagnose faults by comparing the 
estimates of a model with the actual values. Signal-based 
methods are widely used for fault diagnosis; traditional 
techniques such as fast Fourier transform (FFT) [15] and 
variational modal decomposition (VMD) [16] are used to 
extract the features of faults, which are then generally used in 
conjunction with intelligent classification algorithms such as 
error backpropagation neural networks (BPNNs) and support 
vector machines (SVMs). A data-driven approach is more 
suitable for fault diagnosis of a ship’s complex DC distribution 
network of inverters, but large amounts of historical data are 
required to establish a relationship between signals and faults. 
Many diagnostic methods have been proposed and applied 
to inverters [17-21]. Since traditional fault feature extraction 
methods such as FFT, principal component analysis (PCA), 
and VMD are linear (although classification methods such 
as BPNN and SVM have nonlinear capabilities), they have 
common defects, such as a tendency to fall into local minima 
[22] causing a loss of much useful information. The literature 
[23] contains a fault diagnosis method based on PCA and the 
multiclass relevance vector machine (mRVM). This approach 
uses PCA to downscale and extract the fault features for 
voltages and mRVM to locate the faults, which improves the 
efficiency and accuracy of inverter fault diagnosis. Compared 
with traditional feature extraction methods, deep learning 
(DL) methods with multiple nonlinear layers can mine more 
high-quality information from a large amount of data, and 
can significantly enhance fault diagnosis. In another study in 
the literature [19], an improved CNN-GAP model was used for 
fault diagnosis of inverters, and yielded an increased accuracy 
and reduced detection time compared to traditional CNN 
and SVM methods. Another study [22] combined an attention 
collaborative stacked long short-term memory (ASLSTM) 
network with a quantum particle swarm optimisation (QPSO) 
algorithm to intelligently tune the hyperparameters; this 
approach achieved fault diagnosis with multi-information 
feature fusion, and gave good results under constant loads, 
variable loads and noise. It can be observed that DL-based 
inverter fault diagnosis is generally better than traditional 
machine learning methods.

Deep autoencoders, deep belief networks, recurrent neural 
networks, and convolutional neural networks (CNNs) are the 
most widely used DL-based fault diagnosis models [24]. Of 
these, the CNN is one of the most important DL models, as 
it has very powerful feature extraction capabilities and has 
become a leading architecture. Although prior authors [25, 
26] have used CNNs to diagnose inverter faults, the input to 
these networks was still determined by traditional feature 
extraction methods, meaning that the powerful feature 
extraction capability of the CNN was not exploited. 

Current studies of inverter fault diagnosis are conducted 
based on the assumption of an ideal voltage source, but the 
ship’s power grid has limited capacity, and its DC bus voltage 
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is constantly fluctuating within a small range. If the inverter of 
the propulsion motor fails, this will also have a strong impact 
on the ship’s power grid. A one-dimensional CNN-based 
diagnosis method is proposed in this paper to automatically 
locate the fault using the waveform of the output voltage, 
based on the interaction between the inverter fault and ship’s 
limited-capacity grid. From an analysis of the principle of 
operation of the inverter, its three-phase output voltage is 
selected as the input data for the fault diagnosis. For the 
one-to-one correspondence between inverter output voltage 
and the combined switch, the output voltage is simplified. 
A combination of a global average pooling (GAP) layer and 
a fully connected (FC) layer is used to reduce overfitting and 
computation.

DC ELECTRICAL SYSTEMS OF SHIPS

MULTI-ENERGY HYBRID SYSTEMS

In a parallel hybrid ship, mechanical and electric propulsion 
are integrated, and the two propulsion systems can operate 
independently or in coupled mode [1]. When the main engine 
power is sufficient, the electric motor connected to it via the 
power coupling device can also work in power generation 
mode, and can supply power to the main grid through the 
rectifier. The propulsion mode can be selected based on the 
ship’s operating conditions, giving a highly flexible system 
that can maximise the efficient use of energy and reduce 
emissions.

We consider a 7382 tonnes multi energy hybrid bulk carrier 
with a parallel hybrid electrical power system, as shown in 
Fig. 1. This multi-energy hybrid ship has four modes of 
operation:
(1)	Host propulsion mode (direct push mode): The power 

coupling device is only connected to the host, and the 
propeller is driven to rotate by two hosts.

(2)	Individual motor operation mode (PTH mode): The shaft 
belt motor works in motor mode, the power coupling 
device is connected only to the motor, and the propeller 
is driven to rotate by two motors.

(3)	Simultaneous propulsion mode (PTI ) for the main engine 
and shaft belt motor: The shaft belt motor works in motor 
mode and is connected only to the main engine through 
a power coupling device to jointly drive the propeller 
rotation, and the generator set supplies power to the shaft 
belt motor and the whole ship load.

(4)	Host-driven propeller and shaft with generator mode (PTO 
mode): The main machine is in working mode, and the axle 
belt motor is in generator mode, absorbing energy from 
the main machine through the power coupling device for 
power generation and transmitting power to the main DC 
grid through the rectifier.

(1) LNG-fueled diesel engines (2) Asynchronous generators (3) Grid-connected 
switch (4) AC/DC (5) Fast fuse (6) Solid state circuit breakers  
(7) Li-ion battery pack (8) Bidirectional DC/DC (9) DC/AC  
(10) Isolation transformer (11) Diesel engine (12) Propeller  

(13) Propulsion motor/alternator (14) Bow side thrust

Fig.1. Configuration diagram for the power system of a 7382 tonnes multi-
energy hybrid bulk carrier

Tab/ 1. Main parameters for a 7382 tonnesmulti-energy hybrid bulk carrier 

Ship type Bulk carrier Ship size 114.8 × 17.50 
× 8.30 m

Main parameters 
of generators

AC 400 V
50 Hz

350 kW

Main 
parameters 
of Propulsion 
motor

AC 400 V
50 Hz

1000 RPM
500 kW

AC/DC power 400 kW Diesel engine 648 kW

Li-ion battery 
capacity 161k Wh DC/AC power 600 kW

The 2L-VSC inverter contains six fully controllable devices 
(IGBTs) and six uncontrollable devices (power diodes), and 
its topology is shown in Fig. 2. The six switching tubes in 
the inverter circuit are set sequentially at 60° intervals, with 
a conduction angle of 180°, and three switching tubes are on 
simultaneously at any given moment. To avoid two switching 
tubes on the same bridge arm conducting at the same time 
and causing an SCF, a very short time interval needs to be 
added between the instants at which the previous switch 
turns off and the next switch turns on.
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Fig. 2. Topology of a two-level three-phase voltage source inverter

It can be seen from the topology in Fig. 2 that the 2L-VSC 
inverter consists of three groups of six switches, and the upper 
and lower switches of the same bridge arm must be in opposite 
states, meaning that there are eight switch combinations for 
the three groups of switches. To simplify the description, 
the power switch tube is set to one to represent an open state 
and zero for a closed state. The correspondence between the 
condition of each inverter switch and the three-phase output 
voltage can then be obtained as shown in Table 2.
Tab. 2. Relationships between inverter switching states and three-phase output 

voltages 

Item S1 S2 S3 S4 S5 S6 uan/Vdc ubn/Vdc ucn/Vdc

0 0 1 0 1 0 1 0 0 0

1 0 1 0 1 1 0 −1/3 −1/3 2/3

2 0 1 1 0 0 1 −1/3 2/3 −1/3

3 0 0 0 0 1 0 −2/3 1/3 1/3

4 1 0 0 1 0 1 2/3 −1/3 −1/3

5 1 0 0 1 1 0 1/3 −2/3 1/3

6 1 0 1 0 0 1 1/3 1/3 −2/3

7 1 0 1 0 0 0 0 0 0

From Table 2, we see that the switch states 1–6 represent 
the operating state of the inverter, and the output voltage to 
the external load is non-zero. When the switch is in state 0 or 
state 7, the inverter output voltage is zero. Assuming that the 
power switch is an ideal device and ignoring the effect of dead 
bands, the inverter output voltage under normal conditions 
can be derived as follows:
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SIGNAL ANALYSIS OF INVERTER SIGNALS 

Since the inverter can operate for a short time under an OCF, it is still common to install a fast 
fuse in the hardware circuitry to handle an inverter SCF by converting it into an OCF. As can be 
seen from Eq. (1), the inverter has a unique corresponding output voltage under any switch 
combination. If one of the power switch tubes fails, the output voltage waveform will be obviously 
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SIGNAL ANALYSIS OF INVERTER SIGNALS

Since the inverter can operate for a short time under an 
OCF, it is still common to install a fast fuse in the hardware 
circuitry to handle an inverter SCF by converting it into an 
OCF. As can be seen from Eq. (1), the inverter has a unique 
corresponding output voltage under any switch combination. 

If one of the power switch tubes fails, the output voltage 
waveform will be obviously different from the normal state; 
the output voltage waveforms also differ with different failed 
power switch tube. The probability of several power switching 
tubes failing at the same time in an inverter is very low, and 
we therefore consider only the cases of a single OCF and 
a dual OCF in this paper. The topology of the 2L-VSC inverter 
indicates that there are six types of faults when a single-tube 
OCF occurs, and 15 types of faults when a double-tube OCF 
occurs. Faults can be divided into several types according to 
the location of the fault and its impact on the phase voltage, 
as shown in Table 3.
Tab. 3. Fault settings for the two-level three-phase voltage source inverter 

Inverter status Fault type
Faulty power 

switching 
tubes

Fault 
number

Normal None None Normal

Single tube 
fault Single tube fault

S1 S1

S2 S2

S3 S3

S4 S4

S5 S5

S6 S6

Dual tube fault

Single-phase power 
loss fault

S1, S2 S1S2

S3, S4 S3S4

S5, S6 S5S6

Fault with different 
phase, same side 

S1, S3 S1S3

S1, S5 S1S5

S3, S5 S3S5

S2, S4 S2S4

S2, S6 S2S6

S4, S6 S4S6

Fault with different 
phase, different side 

S1, S4 S1S4

S1, S6 S1S6

S2, S3 S2S3

S3, S6 S3S6

S2, S5 S2S5

S4, S5 S4S5

The type of signal has a strong impact on the diagnosis 
of a inverter fault. Although studies in the literature [27, 28] 
have used the inverter output current as a fault diagnosis 
signal, the operating conditions of the propulsion motor are 
variable and complex, which can have a great impact on the 
current and can easily cause misdiagnosis. Some authors 
[23, 29] have used the inverter output voltage as the analysis 
object, which is less affected by load variation than current 
and has more significant fault characteristics, and their 
results have also shown good diagnostic ability. However, 
all of these works involved analytical studies of individual 
inverters or of the closely connected rear stages, and were 
carried out under stable, interference-free conditions of the 
supply grid. In reality, for multi-energy hybrid ships, the grid 
capacity is very limited, and the capacity of the propulsion 
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motor can sometimes reach more than 80% of the capacity 
of the generator set; this means that the failure of an inverter 
will inevitably have a strong impact on the grid, and the 
fluctuation of the grid will in turn affect the output voltage 
of the inverter to a large extent. In this paper, we consider 
a multi-energy hybrid power system in which the three-phase 
output voltage from the inverter is selected as the input data 
for fault diagnosis, as this can reflect the situation after 
inverter failure more realistically. Fig. 3 shows the waveforms 
for the DC bus voltage and output voltage under normal, 
single-tube and double-tube faults of the inverter when the 
system is stable.

(a) DC bus voltage and inverter phase voltages in no-fault conditions

(b) DC bus voltage and inverterphase voltages for S1 single-tube-faul

(c) DC bus voltage and inverter phase voltages forS1,S2 dual-tube-faul

(d) DC bus voltage and inverter phase voltages for S1,S5 dual-tube-faul

(e) DC bus voltage and inverter phase voltages forS1,S6 dual-tube-faul

Fig.3. DC bus voltage and output voltage waveforms for different states of the 
inverter

As can seen from Fig. 3, the output voltage waveforms of 
the inverters under different conditions are not the same in 
any voltage cycle, which provides a basis for fault diagnosis 
from the voltage signal. The fluctuation in the bus voltage 
under an inverter fault is much larger than that under normal 
conditions, and this is caused by an unbalanced three-phase 
current due to the fault. The controller generates a drive signal 
based on the set speed and sends it to the inverter. If there 
is an OCF, the power switch tube that should be conducting 
cannot pass the current, and no current will pass through the 
phase where the motor is connected to this switch tube. The 
controller controls the remainder of the fault-free phases to 
pass the maximum current in advance, to allow the motor to 
reach the set speed. Due to the large capacity of the propulsion 
motor, a short period of high current will go through, the 
impact on the grid will be large and the generator set will 
undergo hysteresis, meaning that it will be too late to react, 
with a sudden drop in bus voltage. The lithium battery set will 
automatically be accessed when the bus voltage is below 740V, 
in order to supply additional power to the grid to stabilise 
the bus voltage. 
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FAULT DIAGNOSIS USING A ONE-
DIMENSIONAL CNN

From the analysis in the previous section, it can be seen 
that the output voltage of the inverter under any switch 
combination has unique, significant fault characteristics, 
regardless of whether or not the power switch tube is faulty. 
Hence, the three-phase phase voltage output from the inverter 
is selected as input to the CNN in our study. Multi-energy 
hybrid ships typically operate in PTH mode under no-load 
conditions. In this mode, the electric propulsion unit is 
responsible for the navigation of the ship and the inverter 
works close to its full load, meaning that it is most prone to 
failure. In this paper, we therefore simulate the output three-
phase voltage of the single-side inverter under 22 different 
conditions, including single-tube and dual-tube faults, and 
a dataset is bulitfrom a multi-energy hybrid power system 
model in Matlab/Simulink for the PTH mode. These faults are 
simulated by artificially zero drive signal of power switching 
tubes for 48 s for each type. The rated speed of the propulsion 
motor is 1000 rev/min, and the minimum stable running 
speed is 200 rev/min. From motor speed regulation theory, 
it is known that the higher the motor speed, the shorter the 
inverter output voltage cycle. Hence, in order to ensure that 
each group of sample data contains at least one complete 
voltage cycle, we simulate various working conditions at 
200 rev/min, and the sampling time for each group of samples 
is 0.1 s. This gives a total of 4000 x 3=12,000 sampling points 
for each group of samples, and a 480 groups of sample data 
are obtained for each type. Of these, 240 groups are used 
for training of the CNN model, 90 for validation, and 150 
for testing.

DATA PRE-PROCESSING

 The three-phase phase voltages output from the inverter 
have the form of two-dimensional data with consistently high 
dimensionality, meaning that they are difficult to process 
and classify with a one-dimensional CNN. From Eq. (1), we 
see that there is also a specific relationship between the three 
phase voltages output from the inverter at the same moment, 
regardless of whether the inverter is faulty or not, and this 
relationship is determined by the controllable switching 
combination. To address this feature, a data processing 
method is proposed in which the three-phase voltage data 
at the same sampling point are arranged according to uan, ubn, 
and ucn while the timing is still in the form of the original 
sampling order. The three phase voltages are rearranged in 
such a way as to reduce the data from two dimensions to one 
dimension, while retaining the information in the original 
data. Fig. 4 shows the details of the downscaling process, 
where uann, ubnn, and ucnn are the three-phase voltages at the 
sampling points tn, n = 1, 2, 3, respectively. The three-phase 
phase voltage output by the inverter is less affected by the 
change in load, which directly reflects the operating state 
of the inverter and is more effective when used for inverter 
fault diagnosis than the current signal. The three-phase 

phase voltage is the phase voltage between the inverter and 
the propulsion motor, and additional voltage-measuring 
equipment is required in the transmission line to obtain 
these signals.

Fig. 4. Degradation process of the three-phase phase voltage

CNN NETWORK 

The current trend in CNN models is to use increasing 
numbers of network layers and smaller convolutional 
kernels, as small convolutional kernels can obtain better 
local information while deeper networks can obtain better 
global information.

A deep CNN structure was therefore designed as shown 
in Fig. 5. The input layer handled the processed voltage data 
(batch size: 12,000, 1), and the network extracted the features 
with three convolutional layers. The convolutional kernels of 
the three convolutional layers were all of 3×1 size , as small 
convolutional kernels have fewer parameters. The number 
of convolutional kernels in the first convolutionallayer was 
16, and the convolutional step was three. Because the voltage 
data were dimensionally reduced in the form of original data 
the three points data were filed to completely characterise 
the state of the inverter. 

The number of convolutional kernels increases with 
the depth of the network, due to the reduced computation 
volume of the previous network after pooling, which 
can be provided computational ability to the additional 
convolutional kernels. Since an increase in the number of 
layers makes the extracted features more abstract, an increase 
in the number of convolutional kernels is a better way to 
combine the previously learned features of the network, as 
it provides more comprehensive coverage of various features. 
Although the FC layer can obtain all the features extracted 
from the convolutional layer, there is a parameter explosion 
and redundant parameters, and the network is prone to 
overfitting. Adding an FC layer can improve overfitting but 
makes the network more bulky. A combination of GAP layer 
and FC layer is therefore carried out. The GAP layer can 
integrate high-dimensional information output from the 
convolutional layer, which directly achieves a significant 
reduction in the number of feature parameters. The layer has 
no parameters, meaning that overfitting can be avoided and 
the network has better robustness. The final classification layer 
is a commonly used Softmax layer, which is used to output 
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the probability of each fault. The ReLU activation function 
is used between the first convolutional layer and the final 
classification layer, and each convolutional layer contains 
layer normalisation (LN) operations, as shown in Fig. 5. The 
main parameters of the network are listed in Table 4.

Fig. 5. Structure of the CNN with the global average pooling method

Tab. 4. Main parameters of the CNN network 

Layer Size Number Step 
length

Output 
size

No. of 
parameters

Input 12000×1 0

Conv_1 3×1 16 3 4000×1×16 160

Average pooling 2×1 1 2000×1×16 0

LN1 16 32

Conv_2 3×1 32 1 667×1×32 1568

Average pooling 2×1 1 334×1×32 0

LN2 32 64

Conv_3 3×1 64 1 167×1×64 6208

Average pooling 3×1 1 84×1×64 0

LN3 64 128

GAP 84×1 64 84 64×1 0

FC 22×1 1430

Softmax 22 1 22 0

HYPERPARAMETERS OF THE CNN

The hyperparameters of CNN models have an 
important impact on the training process and the model 
representation. There is no mature theory to guide the setting 
of hyperparameters, and a trial and error method is usually 
used; the results are then combined based on experience 
and the outcome of training, in a continuous effort to 
obtain appropriate hyperparameters, which requires a large 
number of training iterations. An optimiser is a tool that can 
guide the neural network to update the parameters using 
an optimisation algorithm, which can effectively improve 
the training speed of the model and allow it to find the 
optimal solution quickly. Stochastic gradient descent with 
momentum(SGDM) improves the problem of traditional 
SGD oscillation, and also helps the network to jump out of 
local minima and to find better network parameters when 

the network tends to converge in the middle and late stages 
of training and the network parameters oscillate back and 
forth around local minima.

In this study, a segmented constant decay learning rate 
was chosen for parameter 
updating, with a large 
learning rate to allow the 
network to converge quickly 
to find the optimal solution. 
The learning rate was then 
gradually reduced to ensure 
the stability of the model in 
the later training period. The 
initial learning rate was 0.01, 
and this was reduced by half 
after every 10 epochs. Other 
measures were also taken to 
reduce the overfitting problem, 
such as rearranging data at 

the end of each iteration, and the main parameters of the 
optimisation algorithm were set as shown in Table 5.

Tab. 5. Main parameters of the optimisation algorithm

Optimisation 
algorithm SGDM Shuffle Every epoch

Initial learn rate 0.01 Validation 
frequency 20

Learning rate 
drop factor 0.5 Minibatch size 128

Learning rate 
drop period 10 MaxEpochs 30

Learn rate 
schedule Piecewise L2 regularisation 0.0001

NETWORK PERFORMANCE

Validation was carried out in Matlab, and a CNN model 
was used with a single CPU. The proposed CNN model 
was evaluated using the hybrid ship inverter fault data 
and the optimisation algorithm described in the previous 
section. Fault diagnosis is usually the main consideration 
when evaluating the accuracy performance of a diagnostic 
system. Fig. 6 shows the results for the training process of 
the network. After roughly 80 iterations, i.e. two epochs, the 
network gradually converges, and the correctness and loss 
of the model gradually smooths out, giving good results.  
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Fig. 6. Training and validation process of the CNN model

The main concern in a CNN model is accuracy. The 
proposed inverter fault diagnosis model on test data for ten 
times, which gave an average accuracy of 99.70%, representing 
very good results.

NOISE TESTS

A real multi-energy hybrid ship has many electrical 
devices, and the inverter must operate in a harsh environment. 
The collected signals also contain random interference noise, 
which affects the effectiveness of fault diagnosis. The signal-
to-noise ratio (SNR) is the ratio of the average power of the 
effective signal to the average power of the noise, and is 
expressed mathematically as follows:

      
 

 

𝑆𝑆𝑆𝑆𝑆𝑆 = 10𝑙𝑙𝑙𝑙𝑙𝑙10
𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

                                (2) 

where PSignal is the energy of the effective signal, and PNoise is the energy of the noise. 
The smaller the SNR, the greater the proportion of noise in the signal. To simulate the noise 

interference problem in the sampling process, Gaussian white noise was added to the signal with 
SNRs of 1, 10, 20 and 30dB, to verify the robustness of our CNN fault diagnosis model under several 
levels of strong noise perturbation. Gaussian white noise is a random variable with a normal 
probability distribution, with uncorrelated second-order moments and constant first-order moments. 
The results for the signal of the phase voltage ua under normal conditions and with the addition of 
noise with an SNR of 10dB are shown in Fig. 8. Although the voltage signal is very strong, it is still 
greatly affected by noise, and the signal no longer shows local details but only the overall contour, 
which makes it difficult to extract effective fault characteristic information. 
 

Fig. 8. Composite noise signal with normal inverter and SNR =10dB 

The proposed CNN fault diagnosis model was used to process the data in four noisy states, 
using the same parameters as given above. Five sets of training and testing were performed for each 
group of noisy cases, and the main results are shown in Table 6 below. It can be seen that even in 
the presence of noise, our CNN model still gives good results, and the accuracy is above 98% in all 
cases. At an SNR value of 10dB or above, the accuracy is greater than 99.5%, and the diagnosis 
results are very good. 

Table 6. Average parameters for CNN models under four SNRs 

 

(2)

where PSignal is the energy of the effective signal, and PNoise is 
the energy of the noise.

The smaller the SNR, the greater the proportion of noise 
in the signal. To simulate the noise interference problem 
in the sampling process, Gaussian white noise was added 
to the signal with SNRs of 1, 10, 20 and 30dB, to verify the 
robustness of our CNN fault diagnosis model under several 
levels of strong noise perturbation. Gaussian white noise is 
a random variable with a normal probability distribution, 
with uncorrelated second-order moments and constant 
first-order moments. The results for the signal of the phase 

voltage ua under normal conditions and with the addition 
of noise with an SNR of 10dB are shown in Fig. 7. Although 
the voltage signal is very strong, it is still greatly affected by 
noise, and the signal no longer shows local details but only the 
overall contour, which makes it difficult to extract effective 
fault characteristic information.

Fig. 7. Composite noise signal with normal inverter and SNR =10dB

The proposed CNN fault diagnosis model was used 
to process the data in four noisy states, using the same 
parameters as given above. Five sets of training and testing 
were performed for each group of noisy cases, and the main 
results are shown in Table 6 below. It can be seen that even in 
the presence of noise, our CNN model still gives good results, 
and the accuracy is above 98% in all cases. At an SNR value 
of 10dB or above, the accuracy is greater than 99.5%, and the 
diagnosis results are very good.
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Tab. 6. Average parameters for CNN models under four SNRs

SNR(dB)
Average 
training 

accuracy (%)

Average 
verification 

accuracy (%)

Average test 
accuracy (%)

Average 
loss

1 98.35 98.28 98.23 0.076

10 99.33 99.27 99.24 0.053

20 99.43 99.34 99.39 0.040

30 99.62 99.49 99.51 0.032

CONCLUSIONS

This paper presents a one-dimensional CNN-based fault 
diagnosis model for three-phase voltage source inverters. 
The proposed model can directly process the original 
voltage signal without the need for a tedious manual feature 
extraction process. Experimental results verify that our model 
can achieve a very high diagnostic accuracy in the pure signal 
mode, and can also reach an accuracy of over 99.5% under 
low noise conditions, making it practical for inverter fault 
diagnosis of a ship’s DC electrical system.
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