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AbstrAct

In this article, a deep reinforcement learning based three-dimensional path following control approach is proposed for 
an underactuated autonomous underwater vehicle (AUV). To be specific, kinematic control laws are employed by using 
the three-dimensional line-of-sight guidance and dynamic control laws are employed by using the twin delayed deep 
deterministic policy gradient algorithm (TD3), contributing to the surge velocity, pitch angle and heading angle control 
of an underactuated AUV. In order to solve the chattering of controllers, the action filter and the punishment function 
are built respectively, which can make control signals stable. Simulations are carried out to evaluate the performance 
of the proposed control approach. And results show that the AUV can complete the control mission successfully.
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INTRODUCTION

As an efficient underwater operation equipment, the 
autonomous underwater vehicle (AUV) can complete 
many missions, such as subsea creature monitoring, marine 
hydrological environment detection, and seafloor mapping 
[1-3], and path-following control is one of the core technologies 
for AUVs to successfully complete those missions [4, 5].

Now, fruitful research approaches focused on model-based 
methods are being employed for the path-following control 
of an AUV, such as PID control, sliding mode control, fuzzy 
control and model predictive control [6-8]. Wan et al. propose 
a multi-strategy fusion control with delay method, avoiding 
the chattering caused by frequent switching [9]. Xia et al. 
combine the Lyapunov method with line-of-sight guidance 
to design dynamic control laws, and utilize fuzzy parameter 

optimization to solve the chattering of controllers [10]. Fang 
et al. propose a neural network-based gain observer to design 
dynamic and kinematic controllers [11]. Zhang et al. design an 
adaptive neural network controller, approximating the model 
uncertainties [12]. A sliding mode control-based procedure 
for the design of model predictive control is proposed in 
[13]. These control approaches are based on the constructed 
mathematical model, where the design of the controllers or 
the control laws depend on the model. However, an accurate 
model of an AUV is difficult to acquire directly because of the 
system complexity and underwater environment. Considering 
the practical constraints, the reinforcement learning (RL) based 
model-free control approach is receiving more attention and 
provides a promising alternative for motion control [14].

The RL vehicle learns the end-to-end connection between 
observations and actions by interacting with environment, where 
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the control design is implemented regardless of the system model 
[15]. The deep neural networks with arbitrary approximation 
capabilities can represent the complex relationship between inputs 
and outputs, and accurately learn from the dynamics of the model. 
With the aid of deep neural networks, the deep RL (DRL) achieves 
very impressive results. For example, by decomposing the path-
following control into waypoint following control, Fang et al. 
design a Deep Deterministic Policy Gradient (DDPG)-based 
three-dimensional motion controller for an AUV [16]. Zielinski 
et al. propose vision-based navigation control laws for an AUV 
using the Advantage Actor-Critic (A2C) framework, and compare 
the control performance of different image processing methods 
[17]. Song et al. utilize the DDPG to design an end-to-end control 
method for target tracking of AUVs, avoiding the controller 
design through the complex dynamic model [18]. Meyer et al. 
simplify the sonar inputs and design an end-to-end controller by 
Proximal Policy Optimization (PPO), where collision avoidance 
is also considered [19]. Martinsen et al. utilize the DDPG to 
design a straight path-following controller of an underactuated 
vehicle, and the Gaussian reward is used to replace the traditional 
boundary reward, which significantly improves the training 
efficiency [20]. However, the above DRL-based control researches 
mainly focus on efficiency and accuracy, and have not considered 
the control chattering. The chronic chattering of controllers will 
impair the actuator performance. Moreover, there are lots of states 
and network nodes in the network design, slowing the network 
training and algorithm convergence.

Given the potential of model-free DRL in path-following 
control, this article researches the three-dimensional path-
following control of an underactuated AUV based on the DRL. 
The path-following control is transformed into the heading 
control and pitch control. Kinematic control laws are employed 
using the three-dimensional line-of-sight (LOS) guidance, and 
dynamic control laws are employed using the twin delayed deep 
deterministic policy gradient (TD3). Besides, taking controller 
chattering into consideration, the smooth reward function and 
a first-order filter are introduced and thus make the control 
inputs smooth. Simulation results show that the proposed 
DRL-based method is capable of providing the required vehicle 
control along a three-dimensional path. Moreover, compared 
to the DDPG proposed in [16], the proposed control approach 
has remarkable effectiveness and superiority.

The rest of the article is organized as follows. The second 
section presents the problem formulation on the path-
following of an AUV. The third section presents the DRL-based 
threedimensional path-following control design, including 
kinematic guidance design, dynamic control design and TD3 
design. In the fourth section, simulation results and comparisons 
are provided to validate the proposed control approach. Finally, 
the last section concludes this article and indicates further work.

PROBLEM FORMULATION

As shown in Fig. 1, two coordinate frames in the three-
dimensional space are introduced, including the earth-fixed 
frame ξηζ and the body-fixed frame xyz. Pi represents the desired 

waypoint, where i = 1,..., n. And the desired path can be obtained 
by connecting the neighbouring waypoints.

Fig. 1. Coordinate frames in three-dimensional space

According to [21], the roll motion of the AUV can be ignored 
and the motion model with five degrees-of-freedom can be 
written as
     η. = J(η)v

  (1)
 Mv. + C(v)v + D(v)v + g(η) = τ

where η = [ξ, η, ζ, θ, ψ]T with (ξ, η, ζ) being the positions of the 
AUV in the earth-fixed frame, and θ and ψ being the pitch angle 
and heading angle, respectively. v = [u, v, w, q, r]T represents the 
velocity of the AUV in the body-fixed frame, with u, v, w being 
the surge, sway, and heave velocities and q, r being the pitch 
and yaw velocities. M is the inertia matrix, C(v) is the Coriolis-
centripetal matrix. D(v) is the fluid damping matrix. g(η) is the 
restoring force vector. τ = [τu , 0, 0, τq , τr]

T is the control inputs 
including the surge force τu, the pitch torque τq, and the yaw 
torque τr. J(η) is the rotation matrix from the body-fixed frame 
to the earth-fixed frame, which is written as

 J1(η) 03×3 
J(η) =             (2)

 02×2 J2(η)

with

J1(η) =  , J2(η) = 

   (3)

Taking practical engineering into consideration, the pitch 
angle of an underactuated AUV is restricted as −π/2<θ<π/2, 
and the heading angle is restricted as −π/ψ<π.

In this article, our objective is to design the DRL-based 
three-dimensional path-followingcontrol approach of an 
underactuated AUV such that the vehicle can follow the 
desired path. A geometrical illustration of the DRL-based path-
following control is shown in Fig. 2. For the kinematic design, 
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the desired path is obtained by connecting the neighbouring 
waypoints. And the desired angles are calculated via the position 
error feedback. For the dynamic design, the control inputs of 
the underactuated AUV are calculated via the DRL network. 
Besides, in order to get smooth control actions and improve the 
training efficiency, additional rewards and an efficient network 
structure are designed.

Fig. 2. Visualization of the DRL-based path-following control structure

DEEP RL-BASED PATH-FOLLOWING 
CONTROL DESIGN

As shown in Fig. 2, the DRL-based path-following control 
structure includes kinematic guidance design and dynamic 
control design. The given waypoints are transformed into 
the desired heading angle and pitch angle by using three-
dimensional LOS guidance. And the DRL-based control design 
is used to calculate the control inputs, where states, actions, 
rewards and the TD3 network are designed.

KINEMATIC GUIDANCE DESIGN

Based on the three-dimensional LOS guidance [22], the 
desired kinematic control laws of the vehicle can be obtained. 
The three-dimensional LOS guidance is described in Fig. 1, 
where P(x, y, z) represents the current positions of the AUV and 
PiPi+1 represents the desired pathconnected by neighbouring 
waypoints. Considering the actual positions and desired path, 
thefollowing errors can be calculated, which are defined as e. 
Δ is the lookahead distance. ψd and θd are the desired heading 
angle and desired pitch angle, respectively.

Kinematic guidance can be achieved as follows. Firstly, the 
vehicle closes in on the desired path, which means that following 
errors converge to zero. Secondly, the vehicle moves along the 
desired path segment PiPi+1. The desired heading angle can be 
written as

ψd = arctan 2(yLOS – y, xLOS – x)   (4)

Besides, the desired pitch angle can be written as

θd = arctan(  )  (5)

where (yLOS, xLOS, zLOS) los los los x y z represents the LOS point 
shown in Fig. 1, which indicates the desired motion direction 
of the vehicle along PiPi+1.

The desired path is based on the neighbouring waypoints. 
With the switching of waypoints, the desired path is continually 
changed. Therefore, the switching scheme can be designed as

d =   (6)

with
         i,  d ≥ RT

i =              (7)
        i+1, d < RT

where RT > 0 represents the switching radius, usually set to 1.5~5 
times the length of the vehicle. d represents the distance between 
the actual position of the vehicle and the current waypoint. And 
i represents the ith waypoint.

DYNAMIC CONTROL DESIGN

By using the RL-based control [23], the desired dynamic 
control laws of the vehicle, regardless of the dynamic model, 
can be obtained, where the interaction between the vehicle 
and the environment is performed. This control process can 
be described as a Markov decision process, where the AUV 
performs actions under the current states and behaviour policy. 
And the vehicle obtains rewards with the states updated. By 
repeating this process, the optimal behaviour policy can be 
obtained and makes the AUV follow the desired path.

(1) States
The states consist of two components: motion states and 

error states, which can be written as

       S = [Smotion , Serror]
T

i =  Smotion = [u, v, w, q, r, θ, ψ]T   (8)

       Serror = [θe , ψe , ue]
T

where Smotion represents motion states and Serror represents error 
states. θe, ψe and ue represent the pitch angle error, heading 
angle error, and surge velocity error. To be specific, there are

       θe = θd – θ

  ψe = ψd – ψ         (9)

       ue = ud – u

where ψd and θd can be calculated by using the above three-
dimensional LOS guidance.

However, there is a problem with ψ approaching π , −π, and 
ψd approaching −π, π; ψe will approach ±2π, and it will cause the 
AUV to approach the desired angle in the opposite direction. As 
shown in Fig. 3(a), the ψe will cause the AUV to rotate clockwise 
to approach the desiredheading angle, but a more efficient way 
is to rotate counterclockwise, as shown in Fig. 3(b).
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(3) Rewards
By setting proper and effective rewards, the vehicle is able to 

learn decision-making behaviour just like a human being. In 
the three-dimensional path-following control, following and 
maintaining the desired heading and pitch angles are essential. 
Besides, controller chattering should be avoided for as long as 
possible in the practical engineering. The rewards of an AUV 
are set as follows.

The first is the path-following reward. This reward prompts 
the vehicle to follow the desired path and is defined as

rpf = –(kpf (|θe|+|ψe|+ue)+ k1 arctan(θe
2) +

+ k2 arctan(ψe
2)+ k3 arctan(ue

2))   (14)

where kpf , k1 , k2 and k3 are positive constants. ue , θe and ψe 
make the reward more sensitive to the larger errors. And the 
arctangent function makes the reward gradient significant when 
the errors are close to zero, helping the AUV achieve path-
following accurately.

The second is the smoothing reward. This punishment forces 
the vehicle to decrease the frequency and size of actions for as 
long as possible, which is defined as

rs= – c1(|τq|+|τ.q|)– c2(|τr|+|τ.r|)   (15)

where c1 and c2 are positive constants. τq and τr are used to avoid 
large control inputs. τ.q and τ.r are used to smooth the control 
inputs, and avoid control chattering.

Therefore, the overall rewards for the path-following control 
of an AUV are written as

r = rpf + r        (16)

In addition to states, actions and rewards, the ending 
condition is also defined. During the training process, the 
maximum training time of each episode is Tend . The training 
will be ended when Tend  is arrived at and/or the desired path 
is followed. To be specific, the ending condition is written as

     1, if (T = Tend) or (d < RT & i = n
done                 (17)

     0,     otherwise

TD3 NETWORK DESIGN

Considering the Q value overestimation of DDPG, TD3 
is proposed in the RL field, which includes clipped double 
Q-learning, delayed policy update and target policy smoothing 
[24]. The network of TD3 is shown in Fig. 4. A small batch 
(s, sʹ, a, r) is sampled from the replay buffer and then the 
observation sʹ is input into an actor target, getting the next 
action aʹ The state-action (sʹ, aʹ) is input into two actor targets, 
where two Q values can be calculated. The final Q value and 
the mean square error are determined respectively, updating 
the critic model by backpropagation. And the actor model is 

Fig. 3. Heading error calculation 

Therefore, ψe is limited such that the vehicle can approach 
the desired signal in the direction of the small semicircle. The 
error can be written as

        ψe , |ψe | < π

ψe =  ψe + 2π, ψe < –π     (10)

        ψe – 2π, ψe > π

The state values have different units and scales. Excessive state 
values may lead to error gradients and influence the following 
performance. To avoid this problem, a normalization method is 
proposed to transform their measurements, which is beneficial 
for feature extraction and speeds up the training of the DRL. 
The method is as follows:

Si =  , i = 1,..., 10   (11)

where Si represents the ith state in (8) and Si,max represents the 
maximum velocity or angle. To be specific, Si,max represents the 
maximum velocity when i   {1,..., 5}, and Si,max represents the 
maximum angle when i   {8, 9, 10}.

(2) Actions
The underactuated AUV relies on the main propeller and 

rudders to control its attitude and position, so the actions 
include the surge force, pitch torque and yaw torque of the 
vehicle, which can be written as

a = [τu, τq, τr]
T      (12)

Besides, the actions are limited to the vehicle’s capability, 
such that control constraints should be considered, i.e.,  
a   (amin, amax), where amin represents the minimum action and 
amax represents the maximum action. Since backward motion 
is forbidden for the path-following of the AUV, the surge force 
is always positive.

In order to avoid the controller chattering, a first-order filter 
is first introduced, which can be written as

       τi,t = (1 – a)τi,t–1 + aui,t
              (13)

       a = 

where i = q, r. Tf > 0. Δt represents the step length and ui,t 
represents the action.
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updated using the Q value calculated by the first critic model. 
The soft update is performed on all target networks.

Firstly, there exists a Q value overestimation by using the max 
operation under DQN and DDPG. The double Q-learning is 
introduced in TD3 where the critic network is updated. Besides, 
two networks of Q value are built and then the minimum value 
is used. There is

y(r, sʹ) = r + γ  Qi (sʹ, aʹ)    (18)

where y(r, sʹ) represents the final Q value; Q1(·) and Q2(·) are the 
Q value generated by the two critic networks; r is the current 
reward; γ is the decay factor. With the final Q value determined, 
the mean square error is calculated by combining with the 
Q value and target value, and the loss function of the critic 
network can be obtained.

Secondly, the stability of the target network is the premise 
to realize the stable convergence of the policy network. The 
action with the largest expected reward is selected by using 
the policy network. In order to suppress the policy update in 
the wrong state, the error of the value estimation should be 
minimized. Therefore, by reducing the update frequency of the 
policy network, higherquality policy updates can be obtained. 
As shown in Fig. 4, the delay means that the policy network will 
be updated after the critic network is updated twice.

Thirdly, one problem of DDPG is that there may be overfitting 
to peaks in the value space, leading to local optima overfitting. 
Therefore, within the generation of the target policy, adding 
noise as regularization can smooth the calculation of the Q 
value and avoid overfitting. There is

y(r, sʹ) = r + γQθʹ(sʹ, πφʹ(sʹ)+ ),

 ~ clip(N(0, σ), –c, c)     (19)

where  represents the clipped noise, which follows a normal 
distribution. Adding disturbances to input actions of the target 
network makes the current net update within a certain range 
around the target network.

In the TD3 network design, the structure of the actor network 
and critic network is shown in Fig. 5, which has fewer nodes 

than the previous work [23]. The inputs of the actor network 
are states and the outputs are actions. The inputs of the critic 
network are state-action and the outputs are the Q value. To 
be specific, three fully-connected (FC) layers with 200, 100, 
and 3 nodes exist in the actor network, where the first two FC 
layers are the rectified linear unit (Relu) activation layer and 
the last one is the hyperbolic tangent (Tanh) activation layer. 
Four fully-connected (FC) layers with 100, 100, 200 and 1 nodes 
exist in the critic network, where the states and the actions can 
be concatenated together. All networks are updated by utilizing 
the Adam optimizer.

Fig. 5. Network structure of actor and critic

SIMULATION RESULTS

TRAINING RESULTS

The training consists of two parts. In Part I the desired 
surge and angle are introduced, and the desired signals can 
be tracked under the random initial attitude. In Part II two 
waypoints are randomly generated such that the vehicle can 
learn to track the desired path and switch path points. Note that 
Part II is based on Part I, and uses the desired angle generated 
by Part I. Part I consists of 300 episodes and Part II consists of 
700 episodes, respectively. The training parameters and reset 
functions are as follows.

Fig. 4. Network structure of TD3
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Part 1: At the beginning of each episode, the initial heading 
angle of the AUV is randomly set within [-180°, 180°], the initial 
pitch angle is set within [-15°, 15°], and the desired heading 
angle and desired pitch angle are randomly set within [-180°, 
180°] and [-15°, 15°], respectively. The initial surge velocity is 
set within [0,1], and the expected value is set within [1, 1.5].

Part 2: The initial positions of the AUV are set as x = 0,  
y    [0,250] and z    [0,50] . The two target positions are 
respectively at x = 250, y   [0,250], z   [0,50] and x = 50,  
y   [0,250], z   [0,50]. The initial heading angle and pitch angle 
are [-180°, 180°] and [-15°, 15°], and the initial surge velocity 
and desired value are [0, 1] and [1, 1.5]. During this training, the 
vehicle learns to follow the path connected by desired waypoints 
with desired velocities.

Episode rewards and average rewards are shown in Fig. 6. 
It can be seen that the rewards converge to a stable value. The 
AUV learns to control velocities in Part I and follow the desired 
path in Part II.

TESTING RESULTS

The testing is performed based on the trained model. 
The initial states of the AUV are shown in Table 3 and the 
waypoint positions are shown in Table 4. In order to evaluate 

the superiority of the proposed TD3-based control approach, 
comparisons with the DDPG proposed in [16] are shown. The 
testing results are shown in Figs. 7‒10.

Tab. 3. Initial states

State Value State Value

Initial surge velocity 0.2 Initial position [200,0,80]

Initial heading angle 0 Initial pitch angle 0

Desired surge velocity 1

Tab. 4. Waypoint positions

Position NO. 1 NO. 2 NO.3 NO. 4 NO. 5

ξ 100 135 205 240 160

η 70 210 200 120 80

ζ 45 70 85 90 100

Position NO. 6 NO. 7 NO.8 NO. 9 NO. 10

ξ 60 60 180 320 320

η 160 300 320 240 40

ζ 120 120 120 70 40

Fig. 7 shows the three-dimensional path-following 
performance of an underactuated AUV by using the DDPG 
control and the TD3 control. It can be seen that the AUV can 
follow the desired path connected by the multiple waypoints. 
Besides, the TD3 control approach has higher following 
accuracy than the DDPG control approach. Fig. 8 shows 
the path-following errors, which can converge to the small 
neighbour of zero, and compared with the DDPG, the TD3 
has smaller following errors. Note that the switching waypoints 
would inevitably influence the path-following performance. Fig. 
9 shows the control inputs of the AUV, including the surge force, 
pitch torque, and yaw torque. By using the proposed control 
approach, the control inputs are stable and avoid chattering. 

Tab. 1. Training parameters

Fig. 6. Episode rewards and average rewards under two parts
Tab. 2. Reset functions

Parameter Value Parameter Value

Max episodes 1000 k1 10

Max steps 3500 k2 10

Actor learning rate 0.001 k3 30

Critic learning rate 0.001 kpf 3

Discount factor 0.99 c1 0.1

Bath size 128 c2 0.1

Reply buffer size 100000 Tend 350

Delay steps 2 RT 5

Policy noise 0.2 Δ 4

Noise bound [–0.5, 0.5] TF 0.2

Δt 0.1

Part I: Reset function

For every episode
Initial posture = [Rand(-1,1)*pi, Rand(-1,1)*pi/12]
Target posture = [Rand(-1,1)*pi, Rand(-1,1)*pi/12]
Initial velocity = Rand(0,1)
Target velocity = Rand(0,1)*0.5+1

End for

Part II: Reset function

For every episode
Initial position = [0, Rand(0,1)*250, Rand(0,1)*50 ]
Waypoint 1 = [ 250, Rand(0,1)*250, Rand(0,1)*50 ]
Waypoint 2 = [ 500, Rand(0,1)*250, Rand(0,1)*50 ]
Initial posture = [Rand(-1,1)*pi, Rand(-1,1)*pi/12]
Initial velocity = Rand(0,1)
Target velocity = Rand(0,1)*0.5+1

End for
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Fig. 10 shows the kinematic errors, including the surge velocity 
errors, yaw angle errors and pitch angle errors. It can be clearly 
observed that the control variables have bigger chattering by 
using the DDPG approach, and that the proposed TD3 can 
ensure higher following accuracy.

Fig. 7. Path-following performance of AUV

Fig. 8. Path-following errors of AUV

Fig. 9. Control inputs of AUV

Fig. 10. Kinematic errors of AUV
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CONCLUSIONS

In this article, the DRL-based three-dimensional path-
following control of an underactuated AUV is researched by 
using LOS guidance and TD3, where controller chattering is also 
considered. A reward function related to action punishment is 
designed, guaranteeing that the control inputs of the vehicle are 
smooth. Besides, an angle error calculation is proposed to solve 
the failure of path- following and guide the vehicle towards the 
targets. In order to accelerate the convergence of the algorithm, 
a two-part training method is adopted, and the observed values 
of state space are normalized before training. The simulation 
results demonstrate the effectiveness and superiority of the 
proposed three-dimensional path-following control approach. 
In future work, the external disturbances and obstacle avoidance 
of the underactuated AUV will be exclusively researched.
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