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AbstrAct

Within the frame of CTO’s standard procedure, a propeller open-water test is preceded by a reference measurement, 
which is taken for a reference propeller model (P356). The results of these measurements are assembled to conduct an 
open-water test uncertainty analysis. Additional material was gathered from open-water tests that were conducted 
throughout several research projects on the CP469 model, which is a model of the Nawigator XXI propeller. The latter 
is a controllable pitch propeller; its pitch was reset before each test repetition. Known procedures for the determination 
of the open-water test uncertainty do not allow one to extract the manufacture impact directly, without building many 
models. This factor was addressed with the use of lifting surface calculations. Under certain additional assumptions, 
these calculations were performed for 100 generic versions of each propeller’s geometry, which were generated by 
random deviations from the theoretical data within the limits of allowed tolerances. The results of the conducted 
analyses made it possible to extract separate factors, which were connected to the test’s repeatability, measurement 
bias and geometry tolerance. 
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INTRODUCTION

Practical ship hydromechanics is founded on a few basic 
experiments [1], [2] that are designed to determine the 
propulsion characteristics of a vessel. Providing a propulsion 
prognosis that is as accurate as possible is essential from 
a propulsion system design point of view [3], [4]. In most cases, 
the considered parameters (delivered power, propeller rate of 
revolution, etc.) are determined with an uncertainty margin 
that is narrow enough to provide reasonable information [5]. 
One of the major sources of full-scale prediction uncertainty 
lies in full-scale extrapolation methods [6]. Due to this, 
scaling procedures remain an important topic in modern 
studies [7], [8], including critical evaluations [9], [10]. 

The strong development of numerical methods has led to 
their application in marine propulsion problems [11], [12], 
[13], [14]; however, seemingly old-fashioned methods like 
regression formulas are still of use [15]. 

On the other hand, the development of theoretical (mainly 
numerical) methods requires the best possible empirical data 
for the validation of the produced models. Obviously, it is 
not possible to determine ‘exact’ parameter values through 
experiments, but decreasing the uncertainty of experiments 
makes it possible to apply a more rigorous verification of the 
values of constants utilised in turbulence equations, etc. In 
the meantime, however, it has been shown that full-scale 
measurement uncertainty is a complex issue – even from 
the point of view of the definition of input values – that is 
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difficult to define precisely [16]. Due to this fact, the available 
full-scale data can be used as reference material for theory 
validation only with a limited accuracy.

Thus, this work is focused on the analysis of model-scale 
experiments only. The main reason for this is that it allows 
the direct comparison of numerical methods and empirical 
values, with no need to transform model-scale values into full-
scale values. The results of multiple repetitions of model-scale 
experiments and lifting surface calculations are utilised to 
extract particular factors that are responsible for open-water 
test uncertainty. 

After slight modifications that address the particular case 
being considered, the presented methods can also be applied 
to the analysis of special types of propulsors like waterjets 
[17] or energy-saving devices [18], [19].

ANALYSED CASES

Two propeller models were investigated from a test 
repeatability point of view: one model has a fixed pitch 
(P356) and the other has a controllable pitch (CP469). The 
first model is a reference propeller that is tested before each 
set of commercial open-water tests, according to the CTO 
standard. The second model was utilised in several research 
projects. 

Fig. 1. P356 (on the left) and CP469 (on the right – prepared for the tests) 
propeller models

The main characteristics of the abovementioned propellers 
are presented in Table 1.
Tab. 1. Characteristics of analysed propellers
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LIFTING SURFACE ANALYSIS

The lifting surface method for open-water analysis is 
a classic method similar to that described in [20]. The initial 
step of the calculations provides a discrete representation 
of the propeller geometry. It is realized by determining the 
Cartesian coordinates of a point located on the blade profiles’ 
mean lines at selected radial and chordwise stations. The 

station distribution is deduced via well-known sine and cosine 
formulas for radial and chordwise distributions, respectively:
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LIFTING SURFACE ANALYSIS 
 
The lifting surface method for open-water analysis is a classic method similar to that described 

in [20]. The initial step of the calculations provides a discrete representation of the propeller 
geometry. It is realized by determining the Cartesian coordinates of a point located on the blade 
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where r is the actual radius [m], R is the propeller radius [m], rh is the hub radius, A is the total 
number of radial stations representing the propeller, x is the actual chordwise station [m], c is the 
chord length at the considered radius [m] and B is the total number of chordwise stations 
representing the propeller. An example of such a discrete representation is given in Fig. 2. 
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where r is the actual radius [m], R is the propeller radius [m], 
rh is the hub radius, A is the total number of radial stations 
representing the propeller, x is the actual chordwise station 
[m], c is the chord length at the considered radius [m] and 
B is the total number of chordwise stations representing the 
propeller. An example of such a discrete representation is 
given in Fig. 2.

Fig. 2. Example of discrete propeller representation

Neighbouring points form a panel, and the control point 
and unit normal vector are determined in the middle of this 
panel. The panel-normal component of the external inflow 
vector is calculated at each control point:
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Neighbouring points form a panel, and the control point and unit normal vector are determined 

in the middle of this panel. The panel-normal component of the external inflow vector is calculated 
at each control point: 

 
𝑢𝑢𝑛𝑛 = 𝒆𝒆 ∙ (𝑽𝑽+ 2𝜋𝜋𝒏𝒏 × 𝒓𝒓), (2) 

 
where un is the panel-normal velocity value [m/s], e is the unit vector normal to the panel surface 
[m], V is the propeller advance velocity [m/s], and n is the propeller rate of revolution vector [rps]. 

Points located on subsequent radial stations but at the same chordwise position represent the 
endpoints of bound vortices. These are supplemented with chordwise trailing vortices, which extend 
behind the blade (in theory to infinity). The vortex system is meant to represent the propeller’s 
impact on the flow, trough-induced velocities, which are deduced via the Biot-Savart law. Initially, 
however, the circulation assigned to the bound vortex is unknown and has to be determined. To 
achieve this, a system of linear equations is constructed in such a way that it satisfies kinematic 
boundary conditions on the propeller surface: panel-normal velocities have to be cancelled out by 
velocities induced by the vortex system. Vortex circulations are taken as unknowns. 

Once the circulation distribution is determined, the total local velocities on the blade surface may 
be determined, and through the Kutta-Zhoukovski law, local forces may be computed: 

 
𝑳𝑳 = 𝝆𝝆𝛤𝛤𝑼𝑼𝑻𝑻 × 𝝀𝝀, (3) 

 
where L is the lift force acting on a vortex [N], ρ is the water density [kg/m3], Γ is the vortex 
circulation [m2/s], UT is the total velocity at the vortex midpoint and λ is the vortex length vector 
[m]. 

Summing up the lift forces provides the inviscid component of the hydrodynamic reaction acting 
on the propeller blade. The easiest way to incorporate the viscous force is to apply an additional drag 
force, with the value of this force being determined via an empirical formula. The results of such 
simulations are strongly influenced by the geometry assigned to the trailing vortices. The 
determination of this geometry is an important topic in itself, and researchers approach this problem 
cautiously [21]. 
 
The calculations in this paper were conducted under the following assumptions: 

- The input geometry of the propeller is randomly variable, within manufacture tolerance 
limits. 

- The vortex wake is considered a rigid vortex wake, with the slipstream contraction being 
ignored and pitch being considered the weighted mean between the propeller’s geometrical 
pitch and advance ratio.  

(2)

where un is the panel-normal velocity value [m/s], e is the 
unit vector normal to the panel surface [m], V is the propeller 
advance velocity [m/s], and n is the propeller rate of revolution 
vector [rps].

Points located on subsequent radial stations but at the same 
chordwise position represent the endpoints of bound vortices. 
These are supplemented with chordwise trailing vortices, 
which extend behind the blade (in theory to infinity). The 
vortex system is meant to represent the propeller’s impact on 
the flow, trough-induced velocities, which are deduced via the 
Biot-Savart law. Initially, however, the circulation assigned 
to the bound vortex is unknown and has to be determined. 
To achieve this, a system of linear equations is constructed 
in such a way that it satisfies kinematic boundary conditions 
on the propeller surface: panel-normal velocities have to be 
cancelled out by velocities induced by the vortex system. 
Vortex circulations are taken as unknowns.

Once the circulation distribution is determined, the total 
local velocities on the blade surface may be determined, 
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and through the Kutta-Zhoukovski law, local forces may be 
computed:
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on the propeller blade. The easiest way to incorporate the viscous force is to apply an additional drag 
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- The input geometry of the propeller is randomly variable, within manufacture tolerance 
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(3)

where L is the lift force acting on a vortex [N], ρ is the water 
density [kg/m3], Γ is the vortex circulation [m2/s], UT is the 
total velocity at the vortex midpoint and λ is the vortex length 
vector [m].

Summing up the lift forces provides the inviscid component 
of the hydrodynamic reaction acting on the propeller blade. 
The easiest way to incorporate the viscous force is to apply 
an additional drag force, with the value of this force being 
determined via an empirical formula. The results of such 
simulations are strongly influenced by the geometry assigned 
to the trailing vortices. The determination of this geometry 
is an important topic in itself, and researchers approach this 
problem cautiously [21].

The calculations in this paper were conducted under the 
following assumptions:
– The input geometry of the propeller is randomly variable, 

within manufacture tolerance limits.
– The vortex wake is considered a rigid vortex wake, with 

the slipstream contraction being ignored and pitch being 
considered the weighted mean between the propeller’s 
geometrical pitch and advance ratio. 

– The weight is calibrated to reproduce the KT(J) function 
resulting from the experiments; calibration is performed 
for an unbiased geometry,

– Viscous effects (profile drag, pressure change due to 
a boundary layer) are calibrated to maximize open-water 
efficiency agreement at the advance ratio corresponding 
to the efficiency peak, as the author feels that this is the 
best way to reproduce the propeller’s dynamic behaviour.
The propeller model manufacture tolerances allowed by 

ITTC [22] are shown in Table 2.
Tab. 2. ITTC allowed tolerances on propeller model dimensions

Parameter Tolerance

Diameter 0.1 mm

Pitch 0.5%

Chord 0.2 mm

Profile offsets 0.05 mm

Rake 0.005*DM

Based on the tolerances in Table 2, 100 generic versions of 
both propellers were prepared through the random application 
of geometry deviations within the prescribed margins and 
investigated using lifting surface code. For each geometry 
(original and generic geometries), open-water calculations 
were performed.

PROPELLER OPEN-WATER TEST

DERIVED PARAMETERS

The basic parameters derived from propeller open-water 
tests are propeller loading coefficients; they are usually based 
on the propeller rates of revolution (KT, KQ) and the advance 
ratio J:
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𝐽𝐽 = 𝑉𝑉
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𝑇𝑇
𝜌𝜌𝑛𝑛2𝑛𝑛4, 𝐾𝐾𝑄𝑄 =

𝑄𝑄
𝜌𝜌𝑛𝑛2𝑛𝑛5. (4) 

 
Based on the complete differential method, the biases of these coefficients may be derived as 

follows: 
 

𝑑𝑑𝐽𝐽 = 1
𝑛𝑛𝑛𝑛 dV + |− 𝑉𝑉

𝑛𝑛2𝑛𝑛 d𝑛𝑛| + |− 𝑉𝑉
𝑛𝑛𝑛𝑛2 d𝐷𝐷|, (5) 

 
𝑑𝑑𝐾𝐾𝑇𝑇 =
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𝜌𝜌𝑛𝑛2𝑛𝑛4 dT + |− 𝑇𝑇
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𝑑𝑑𝐾𝐾𝑄𝑄 =
1
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Formulas defining the uncertainty of dimensionless propeller characteristics include terms referring 
to the diameter bias dD. However, this does not justify the omission of the diameter tolerance from 
the next step, which is the vortex analysis of the tolerance impact. Deviations in the propeller radius 
(and other dimensions) alter its shape and subsequently its hydrodynamic properties, as reflected by 
the values of the thrust T and torque Q used in Eq. (4–7). Hence, one problem is the influence of the 
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the random application of geometry deviations within the prescribed margins and investigated using 
lifting surface code. For each geometry (original and generic geometries), open-water calculations 
were performed. 

PROPELLER OPEN-WATER TEST 

DERIVED PARAMETERS 
 
The basic parameters derived from propeller open-water tests are propeller loading coefficients; 

they are usually based on the propeller rates of revolution (KT, KQ) and the advance ratio J: 
 

𝐽𝐽 = 𝑉𝑉
𝑛𝑛𝑛𝑛,  𝐾𝐾𝑇𝑇 =

𝑇𝑇
𝜌𝜌𝑛𝑛2𝑛𝑛4, 𝐾𝐾𝑄𝑄 =

𝑄𝑄
𝜌𝜌𝑛𝑛2𝑛𝑛5. (4) 

 
Based on the complete differential method, the biases of these coefficients may be derived as 

follows: 
 

𝑑𝑑𝐽𝐽 = 1
𝑛𝑛𝑛𝑛 dV + |− 𝑉𝑉

𝑛𝑛2𝑛𝑛 d𝑛𝑛| + |− 𝑉𝑉
𝑛𝑛𝑛𝑛2 d𝐷𝐷|, (5) 

 
𝑑𝑑𝐾𝐾𝑇𝑇 =

1
𝜌𝜌𝑛𝑛2𝑛𝑛4 dT + |− 𝑇𝑇

𝜌𝜌2𝑛𝑛2𝑛𝑛4 d𝜌𝜌| + |− 2𝑇𝑇
𝜌𝜌𝑛𝑛3𝑛𝑛4 dn| + |− 4𝑇𝑇

𝜌𝜌𝑛𝑛2𝑛𝑛5 dD|, (6) 
 

𝑑𝑑𝐾𝐾𝑄𝑄 =
1

𝜌𝜌𝑛𝑛2𝑛𝑛5 dQ + |− 𝑄𝑄
𝜌𝜌2𝑛𝑛2𝑛𝑛5 d𝜌𝜌| + |− 2𝑄𝑄

𝜌𝜌𝑛𝑛3𝑛𝑛5 dn|+ |− 5𝑄𝑄
𝜌𝜌𝑛𝑛2𝑛𝑛6 dD|.  (7) 

 
Formulas defining the uncertainty of dimensionless propeller characteristics include terms referring 
to the diameter bias dD. However, this does not justify the omission of the diameter tolerance from 
the next step, which is the vortex analysis of the tolerance impact. Deviations in the propeller radius 
(and other dimensions) alter its shape and subsequently its hydrodynamic properties, as reflected by 
the values of the thrust T and torque Q used in Eq. (4–7). Hence, one problem is the influence of the 

(7)
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that are required to determine dKT and dKQ are shown in Table 3. 
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where Sdev is the standard deviation, and M is the number of 
measurement repetitions.
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and 14 repetitions were collected for propeller CP469. For the 
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controllable pitch propeller, the pitch was reset to the target 
value before each run.

For better insight, experimental data are given for 
prescribed advance ratios, which were calculated with 
a fourth-degree polynomial with the least-squares method.

The accuracies of the dynamometer applied during the 
test for each of the measured quantities that are required to 
determine dKT and dKQ are shown in Table 3.
Tab 3. Open-water dynamometer characteristics

dT [N] dQ [Nm] dn [rps]

0.263 0.0054 0.01

The tests were conducted at a rate of revolution that 
satisfied the critical Reynolds number Recr = 5*105 and 
reasonably covered the applied dynamometer capacity. For 
both propellers, the selected rate of revolution was n = 16 rps, 
which resulted in ratios of Re/Recr = 1.06 for P356 and  
Re/Recr=1.53 for CP469.

Fig. 3. Collection of measurement points for propeller P356

Table 4 contains the mean value of the thrust coefficient KTm 
for the corresponding advance ratio J, standard deviation S, 
precision limit P, bias dKT, model test uncertainty U and relative 
value of the latter. The derived statistical parameters have 
small values and hence are presented after being multiplied 
by a factor of 100. 
Tab 4. Statistical analysis of KT repeatability for propeller P356 at Re = 5.30*105

J KTm 100S 100P 100dKT 100U 100U/KT

0.00 0.3480 1.7147 0.4624 0.1149 0.4765 1.3690

0.10 0.3097 0.2014 0.0543 0.1046 0.1179 0.3805

0.20 0.2715 0.4916 0.1326 0.0943 0.1627 0.5993

0.30 0.2336 0.1401 0.0378 0.0841 0.0922 0.3948

0.40 0.1959 0.3355 0.0905 0.0740 0.1169 0.5966

0.50 0.1577 0.4417 0.1191 0.0637 0.1351 0.8564

0.60 0.1179 0.1960 0.0529 0.0530 0.0749 0.6352

0.70 0.0747 0.2851 0.0769 0.0414 0.0873 1.1693

0.80 0.0260 0.3491 0.0941 0.0283 0.0983 3.7752

0.90 -0.0307 0.7889 0.2128 0.0296 0.2148 -7.0005

Table 5 is constructed in a similar manner, but it contains 
torque-related values.
Tab 5. Statistical analysis of KQ repeatability for propeller P356 at Re = 5.30*105

J KQm 100S 100P 100dKQ 100U 100U/KQ

0.00 0.0394 0.1558 0.0420 0.0144 0.0444 1.1262

0.10 0.0353 0.0252 0.0068 0.0131 0.0147 0.4173

0.20 0.0317 0.0476 0.0128 0.0119 0.0175 0.5535

0.30 0.0284 0.0190 0.0051 0.0109 0.0120 0.4242

0.40 0.0252 0.0317 0.0085 0.0099 0.0131 0.5194

0.50 0.0217 0.0409 0.0110 0.0088 0.0141 0.6509

0.60 0.0177 0.0215 0.0058 0.0075 0.0095 0.5366

0.70 0.0130 0.0283 0.0076 0.0061 0.0097 0.7474

0.80 0.0073 0.0347 0.0094 0.0043 0.0103 1.4030

0.90 0.0003 0.0780 0.0210 0.0021 0.0211 60.6752

The data for propeller CP469 are presented in the same 
way as the data for propeller P356.

Fig. 4. Collection of measurement points for propeller CP469

Tables 6 and 7 are constructed in the same way as Tables 4 
and 5, but they contain the results for propeller CP469.
Tab. 6. Statistical analysis of KT repeatability for propeller CP469 at Re = 7.65*105

J KTm 100S 100P 100dKT 100U 100U/KT

0.00 0.4814 0.1716 0.0952 0.1857 0.2087 0.4335

0.10 0.4344 0.1477 0.0819 0.1715 0.1901 0.4375

0.20 0.3841 0.2028 0.1125 0.1563 0.1925 0.5013

0.30 0.3323 0.2973 0.1649 0.1406 0.2167 0.6521

0.40 0.2802 0.3983 0.2209 0.1248 0.2538 0.9056

0.50 0.2282 0.4947 0.2744 0.1090 0.2953 1.2941

0.60 0.1757 0.5886 0.3265 0.0931 0.3395 1.9328

0.70 0.1214 0.6904 0.3830 0.0767 0.3906 3.2168

0.80 0.0633 0.8174 0.4534 0.0591 0.4572 7.2217

0.90 -0.0016 1.0020 0.5558 0.0404 0.5573 -349.506
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Tab. 7. Statistical analysis of KQ repeatability for propeller CP469 at Re = 7.65*105

J KQm 100S 100P 100dKQ 100U 100U/KQ

0.00 0.0616 0.0120 0.0066 0.0250 0.0258 0.4196

0.10 0.0564 0.0142 0.0079 0.0232 0.0245 0.4340

0.20 0.0509 0.0225 0.0125 0.0213 0.0246 0.4842

0.30 0.0453 0.0321 0.0178 0.0193 0.0263 0.5800

0.40 0.0396 0.0416 0.0231 0.0173 0.0289 0.7286

0.50 0.0339 0.0508 0.0282 0.0154 0.0321 0.9461

0.60 0.0281 0.0607 0.0337 0.0134 0.0362 1.2885

0.70 0.0220 0.0732 0.0406 0.0113 0.0421 1.9106

0.80 0.0155 0.0908 0.0503 0.0090 0.0511 3.3092

0.90 0.0080 0.1180 0.0655 0.0064 0.0658 8.2336

VORTEX ANALYSIS OF TOLERANCE IMPACT

The results of vortex calculations are analysed similarly 
to the experimental data, with the determination of the 
standard deviation and precision limit based on Eq. (8) and 
(9). However, to emphasise the fact that these are numerical 
data, the precision limit from these calculations is denoted 
with the symbol P1 instead of P. 
Tab. 8. Statistical analysis of geometry tolerance impact using vortex method 

for propeller model P356

J KTm 100S1 100P1 KQm 100S1 100P1

0.00 0.3480 0.1442 0.0290 0.0396 0.0231 0.0046

0.10 0.3097 0.1263 0.0254 0.0336 0.0172 0.0035

0.20 0.2715 0.0760 0.0153 0.0294 0.0093 0.0019

0.30 0.2336 0.0449 0.0090 0.0256 0.0067 0.0013

0.40 0.1959 0.0666 0.0134 0.0219 0.0099 0.0020

0.50 0.1577 0.0840 0.0169 0.0183 0.0114 0.0023

0.60 0.1179 0.0808 0.0162 0.0147 0.0102 0.0020

0.70 0.0747 0.0669 0.0134 0.0109 0.0080 0.0016

0.80 0.0260 0.0621 0.0125 0.0129 0.0080 0.0016

0.90 -0.0307 0.0926 0.0186 -0.0018 0.0144 0.0029

Tab. 9. Statistical analysis of geometry tolerance impact using vortex method 
for propeller model CP469

J KTm 100S1 100P1 KQm 100S1 100P1

0.00 0.4814 1.0733 0.2147 0.0476 0.1219 0.0244

0.10 0.4344 1.4007 0.2801 0.0509 0.1560 0.0312

0.20 0.3841 1.4725 0.2945 0.0461 0.1616 0.0323

0.30 0.3323 1.3367 0.2673 0.0402 0.1456 0.0291

0.40 0.2802 1.0891 0.2178 0.0342 0.1181 0.0236

0.50 0.2282 0.8081 0.1616 0.0285 0.0872 0.0174

0.60 0.1757 0.5457 0.1091 0.0232 0.0585 0.0117

0.70 0.1214 0.3262 0.0652 0.0176 0.0349 0.0070

0.80 0.0633 0.1501 0.0300 0.0113 0.0169 0.0034

0.90 -0.0016 0.1226 0.0245 0.0001 0.0133 0.0027

RESULTS

The precision limit value P1, obtained through the vortex 
analysis of the tolerance impact, was treated as an additional 
term in Eq. (8) to evaluate the overall uncertainty U2KT/Q:
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treated as an additional term in Eq. (8) to evaluate the overall uncertainty U2KT/Q: 
 

𝑈𝑈2𝐾𝐾𝑇𝑇/𝑄𝑄2 = 𝑑𝑑𝐾𝐾𝑇𝑇/𝑄𝑄2 + 𝑃𝑃𝐾𝐾𝑇𝑇/𝑄𝑄2 + 𝑃𝑃1𝐾𝐾𝑇𝑇/𝑄𝑄2 . (10) 
 
The results of the determination of U2 are presented in Tables 10 and 11. 

Table 10. Overall uncertainty for propeller P356 

J KTm 100U2 U2/KT, % KQm 100U2 
U2/KQ, 

% 
0.0000 0.3480 0.4773 1.371677 0.0394 0.0446 1.132935 
0.1000 0.3097 0.1206 0.389281 0.0353 0.0152 0.429718 
0.2000 0.2715 0.1634 0.601952 0.0317 0.0176 0.554577 
0.3000 0.2336 0.0926 0.396586 0.0284 0.0121 0.426202 
0.4000 0.1959 0.1177 0.600655 0.0252 0.0132 0.52384 
0.5000 0.1577 0.1361 0.863145 0.0217 0.0143 0.65776 
0.6000 0.1179 0.0766 0.64983 0.0177 0.0097 0.54744 
0.7000 0.0747 0.0884 1.182838 0.0130 0.0099 0.759671 
0.8000 0.0260 0.0991 3.809819 0.0073 0.0105 1.432866 
0.9000 -0.0307 0.2157 -7.02451 0.0003 0.0213 71.01017 

 
Table 11. Overall uncertainty for propeller CP469 

J KTm 100U2 U2/KT, % KQm 100U2 
U2/KQ, 

% 
0.0000 0.4814 0.2994 0.621947 0.0616 0.0356 0.577137 
0.1000 0.4344 0.3385 0.779214 0.0564 0.0397 0.703454 
0.2000 0.3841 0.3519 0.916103 0.0509 0.0407 0.79882 
0.3000 0.3323 0.3441 1.035531 0.0453 0.0392 0.865201 
0.4000 0.2802 0.3344 1.193355 0.0396 0.0373 0.941435 
0.5000 0.2282 0.3366 1.474966 0.0339 0.0365 1.077871 
0.6000 0.1757 0.3566 2.029669 0.0281 0.0381 1.356119 
0.7000 0.1214 0.3960 3.262016 0.0220 0.0427 1.941846 
0.8000 0.0633 0.4582 7.238842 0.0155 0.0512 3.303988 
0.9000 -0.0016 0.5578 -348.628 0.0080 0.0659 8.233411 

 
 

(10)

The results of the determination of U2 are presented in 
Tables 10 and 11.
Tab. 10. Overall uncertainty for propeller P356

J KTm 100U2 U2/KT, % KQm 100U2 U2/KQ, %

0.0000 0.3480 0.4773 1.371677 0.0394 0.0446 1.132935

0.1000 0.3097 0.1206 0.389281 0.0353 0.0152 0.429718

0.2000 0.2715 0.1634 0.601952 0.0317 0.0176 0.554577

0.3000 0.2336 0.0926 0.396586 0.0284 0.0121 0.426202

0.4000 0.1959 0.1177 0.600655 0.0252 0.0132 0.52384

0.5000 0.1577 0.1361 0.863145 0.0217 0.0143 0.65776

0.6000 0.1179 0.0766 0.64983 0.0177 0.0097 0.54744

0.7000 0.0747 0.0884 1.182838 0.0130 0.0099 0.759671

0.8000 0.0260 0.0991 3.809819 0.0073 0.0105 1.432866

0.9000 -0.0307 0.2157 -7.02451 0.0003 0.0213 71.01017

Tab. 11. Overall uncertainty for propeller CP469

J KTm 100U2 U2/KT, % KQm 100U2 U2/KQ, %

0.0000 0.4814 0.2994 0.621947 0.0616 0.0356 0.577137

0.1000 0.4344 0.3385 0.779214 0.0564 0.0397 0.703454

0.2000 0.3841 0.3519 0.916103 0.0509 0.0407 0.79882

0.3000 0.3323 0.3441 1.035531 0.0453 0.0392 0.865201

0.4000 0.2802 0.3344 1.193355 0.0396 0.0373 0.941435

0.5000 0.2282 0.3366 1.474966 0.0339 0.0365 1.077871

0.6000 0.1757 0.3566 2.029669 0.0281 0.0381 1.356119

0.7000 0.1214 0.3960 3.262016 0.0220 0.0427 1.941846

0.8000 0.0633 0.4582 7.238842 0.0155 0.0512 3.303988

0.9000 -0.0016 0.5578 -348.628 0.0080 0.0659 8.233411

Fig. 5. Overall thrust uncertainty (100U2KT versus KT)
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The influence of particular terms on the overall uncertainty 
is presented in the form of three factors, the test repeatability 
(σ), bias (ε) and geometry tolerance impact (τ):

 

 
 

 
Fig. 5. Overall thrust uncertainty (100U2KT versus KT) 

 
The influence of particular terms on the overall uncertainty is presented in the form of three factors, 
the test repeatability (σ), bias (ε) and geometry tolerance impact (τ): 
 

𝜎𝜎 = 𝑃𝑃2
𝑈𝑈22 , 𝜀𝜀 =

𝑑𝑑𝐾𝐾𝑇𝑇/𝑄𝑄2

𝑈𝑈22 , 𝜏𝜏 = 𝑃𝑃12
𝑈𝑈22. (11) 

 
The obtained values of these factors are shown in Tables 12 and 13. 

 
Table 12. Uncertainty contributions for propeller P356 

J σT σQ εT εQ τT τQ 
0.0000 0.9384 0.8853 0.0579 0.1041 0.0037 0.01062 
0.1000 0.2029 0.2010 0.7528 0.7458 0.0444 0.053238 
0.2000 0.6583 0.5301 0.3329 0.4582 0.0088 0.011681 
0.3000 0.1665 0.1775 0.8241 0.8109 0.0094 0.011535 
0.4000 0.5915 0.4146 0.3955 0.5624 0.0130 0.022954 
0.5000 0.7656 0.5939 0.2190 0.3801 0.0154 0.025966 
0.6000 0.4767 0.3583 0.4785 0.5991 0.0447 0.042603 
0.7000 0.7575 0.5922 0.2195 0.3815 0.0230 0.026248 
0.8000 0.9025 0.8076 0.0816 0.1690 0.0159 0.023398 
0.9000 0.9737 0.9718 0.0188 0.0097 0.0074 0.018532 

 

(11)

The obtained values of these factors are shown in Tables 12 
and 13.
Tab. 12. Uncertainty contributions for propeller P356 

J σT σQ εT εQ τT τQ

0.0000 0.9384 0.8853 0.0579 0.1041 0.0037 0.01062

0.1000 0.2029 0.2010 0.7528 0.7458 0.0444 0.053238

0.2000 0.6583 0.5301 0.3329 0.4582 0.0088 0.011681

0.3000 0.1665 0.1775 0.8241 0.8109 0.0094 0.011535

0.4000 0.5915 0.4146 0.3955 0.5624 0.0130 0.022954

0.5000 0.7656 0.5939 0.2190 0.3801 0.0154 0.025966

0.6000 0.4767 0.3583 0.4785 0.5991 0.0447 0.042603

0.7000 0.7575 0.5922 0.2195 0.3815 0.0230 0.026248

0.8000 0.9025 0.8076 0.0816 0.1690 0.0159 0.023398

0.9000 0.9737 0.9718 0.0188 0.0097 0.0074 0.018532

Fig. 6. Uncertainty contributions for propeller P356

Tab. 13. Uncertainty contributions for propeller CP469

J σT σQ εT εQ τQ τQ

0.0000 0.1011 0.0345 0.3847 0.4945 0.5142 0.471042

0.1000 0.0585 0.0396 0.2567 0.3419 0.6848 0.618414

0.2000 0.1022 0.0945 0.1973 0.2744 0.7005 0.631062

0.3000 0.2296 0.2063 0.1669 0.2425 0.6034 0.551258

0.4000 0.4364 0.3839 0.1393 0.2153 0.4243 0.400731

0.5000 0.6646 0.5956 0.1049 0.1776 0.2305 0.226759

0.6000 0.8382 0.7821 0.0682 0.1237 0.0936 0.094268

0.7000 0.9354 0.9032 0.0375 0.0700 0.0271 0.026849

0.8000 0.9791 0.9647 0.0166 0.0309 0.0043 0.004408

0.9000 0.9928 0.9889 0.0052 0.0094 0.0019 0.00168

Fig. 7. Uncertainty contributions for propeller CP469

CONCLUSIONS

The following conclusions can be drawn from the results 
presented in this paper:
– For most of the loading values, the overall uncertainty of 

KT/Q was below 2% for both propellers.
– For the fixed pitch propeller:

•	 The test repeatability plays a dominant role for lower 
loadings.

•	 The bias starts to become important at moderate and 
higher loadings, but there is no clear trend that can be 
used to evaluate repeatability/bias domination.

•	 The geometry tolerance impact seems to be irrelevant 
in this case.

– For the controllable pitch propeller:
•	 The test repeatability plays a dominant role for lower 

loadings.
•	 The bias has a generally low uncertainty contribution; 

it is notable at high loadings only.
•	 The geometry tolerance impact seems to be irrelevant 

at lower loadings; however, it becomes dominant at 
high loadings.

– The fluctuating character of uncertainty contributions in 
the case of Fixed Pitch Propeller (FPP) may result from the 
notably lower uncertainty level and the resulting higher 
sensitivity of the analysed values to small deviations.

– The much higher geometry impact in the case of 
Controllable Pitch Propeller (CPP) seems to result from 
the double uncertainty of the propeller pitch: first, at the 
level of geometry definition, and second, in setting the 
target pitch.

– The obtained results provide a rational limit for tying 
the results of numerical calculations to the experimental 
results.

– Future analyses that incorporate the uncertainties of hull 
resistance and self-propulsion tests may make it possible 
to determine the quality of commercially offered powering 
predictions.
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