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ABSTRACT

This paper investigates the use of neural networks (NNs) for the problem of assigning push boats to barge convoys in 
inland waterway transportation (IWT). Push boat‒barge convoy assignmentsare part of the daily decision-making 
process done by dispatchers in IWT companiesforwhich a decision support tool does not exist. The aim of this paper is 
to develop a Neural Network Ensemble (NNE) model that will be able to assist in push boat‒barge convoy assignments 
based on the push boat power.The primary objective of this paper is to derive an NNE model for calculation of push 
boat Shaft Powers (SHPs) by using less than 100% of the experimental data available. The NNE model is applied to 
a real-world case of more than one shipping company from the Republic of Serbia, which is encountered on the Danube 
River. The solution obtained from the NNE model is compared toreal-world full-scale speed/power measurements 
carried out on Serbian push boats,as well as with the results obtained from the previous NNE model. It is found that 
the model is highly accurate, with scope for further improvements.
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INTRODUCTION

In recent decades there have been significant changes in 
inland waterway transport (IWT) in Serbia. Safe conditions 
for inland navigation are being established through 
the maintenance and development of inland waterways, 
while communications between ships and operators are 
being improved. Conditions for the use of different types 
of both self-propelled and non-self-propelled inland ships 
are being determined in that way. This has turned out to 
be important in barge transportation due to the possible 
large number of combinations of barges in push boat‒barge 
convoys (pushed convoys). At the same time, this has caused 
changes in the organisation of the IWT companies and their 
management structure.

IWT in Serbia plays a significant role in the transportation 
of cargo to and from Serbian river ports. There are roughly 
2,500 ships, mostly consisting of barges owned by Serbian and 

foreign IWT companies. Companies cannot become more 
competitive by increasing their market share significantly 
unless they can set up cooperation with a large number of 
other operators.Severe competition and the resulting low 
margins in the main market imply that their profits can only 
be improved by lowering costs and improving their service 
by improving their operational efficiency [1].Furthermore, 
the options that are open to all IWT companies to improve 
their services are limited, as service improvement usually 
consists of complex organisational and technical actions 
necessary for the rational use of ships (barges), ports and 
waterways.

Some of the operational efficiency in IWT derives from 
the assignment of push boats to barge convoys (assignments). 
Assignments are made by dispatchers who work for companies 
on the basis of the availability of push boats and their power 
at a given moment. Most studies in the literature [1, 9, 20] 
have only focused on assignments without a precise analysis 
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training and testing neural networks(NN). The most important 
feature of the future NNE model will be the ability to select 
the best possible push boat for the transport of the given 
barge convoy with the minimal error. Consequently, minimal 
errors and variations of predicted data will be the criteria for 
the selection of various NNE models. The model is intended for 
use in situations in which the dispatcher makes decisions about 
assigning one of several available push boats to a barge convoy. 
Situations that precede or take place after the availability 
of push boats will not be considered. This makes the NNE 
model similar to a decision support tool for dispatching ships. 
After the initial information about the availability of push 
boats and before dispatching the barge convoys with push 
boats, the dispatcher should consult the NNE model for his 
decisions.At that moment, the NNE model should guarantee 
less work and more accurate information and assistance for 
the dispatcher. The NNE model’s ability to predict the best 
push boat for a barge convoy could be a benefit for any IWT 
company.

The contributions of the paper are the following: to offer 
a completely new way of helping with dispatcher decisions, 
where the proposed model is a reliable approach for push 
boat‒barge convoy assignment.

For the  design and building of the  neural network 
architectures in the NNE model, data from full-scale speed/
power trialsare used.Classification of the neural networks in 
the NNE model is done by AdaBoost Regression and Threshold 
(AdaBoost.RT), given in [17]. NNs are trained by theResilient 
backpropagation(RPROP) learning algorithm. Several NNE 
models are made in the process of finding a final solution 
before the best model is selected on the basis ofgraphical and 
numerical methods.Finally, the best NNE model is compared 
with the previous NNE model given in [11].

As a result oftraining NNs and applying the AdaBoost.
RT algorithm over roughly 80% ofthe data from a target 
dataset [4, 11], it is shown that the NNE model can be used to 
assign a push boat to a barge convoy and carry out transport 
in a predetermined period of time.The results have shown 
that anew NNE model could be made quickly if the new data 
had to be included in a partly repeated process of modelling 
the new NNE and training itsNNs. However, the NNE model 
is not applicable to shallow draft navigation.

LITERATURE REVIEW

Over the past few years there has been a significant increase 
in the number of papers investigating the use of NNs in IWT.
In addition to using NNs, researchers also use regression 
analysis to solve various problems in IWT. In the past, 
regression analysis was used to solve every problem, but it 
isgradually being replaced by NNs.

Today, NNs are being used as an important decision 
support tool in a variety of applications. Papers related to 
IWTand in which NNs are investigated as a tool for solving 
problems in IWT can be roughly divided into the following 
two groups: papers directly related to IWT [10, 11, 20] and 

of the assignment possibilities on the basis of the push boat 
power and barge convoy speed. However, in order to operate 
at predefined speeds, there is still a need for calculation of 
the push boat power in pushed convoys. If the push boat 
cannotprovidethe necessary power, it will not be paired 
with the barge convoy. If there is enough power for the given 
pushed convoy speed and if there is more than one available 
push boat at a given time, there will then only be a question 
of which push boat can be more conveniently assigned to 
the barge convoy from the view point of the power use and 
energy consumption.

When it comes to dispatcher decision-making, it is 
assumed that the dispatcher has enough knowledge to make 
the right decision. Dispatcher decisions arise from previous 
experience and available full-scale speed/power trials [20]. 
It is not recommendedfor dispatchers to make decisions 
on the basis of their own calculations if thesehave not been 
previously verified. Correct assignments of push boats to 
barge convoys should be beneficial for the IWT companies.

Barge convoys propelled by push boats offer flexibility in 
barge scheduling as well as in cargo scheduling. For example, 
an IWT company owns and operates an inland fleet, including 
b+p vessels. The fleet consists of b barges and p push boats. 
There are push boats of different sizes, from the smallest one 
that can push up to 1 barge to large ones that can push up to 
k barges (k<b). Between the smallest and largest push boats, 
there are many push boats that can push almost any barge 
convoy between 1 and k barges. It is assumed that each push 
boat can move any barge convoy and that it will operate at 
full power. The question is at what speed it can do it. Since 
the speeds are determined by the time of arrival of the cargo 
at the given location, the final question is whether each push 
boat can satisfy a predefined barge convoy time of arrival at 
full power. In other words, although more than one push boat 
can carry out transport with the given barge convoy, only one 
can do it with the most efficient use of power. The person who 
should answer these questions is the dispatcher.

Depending on the type of barges, different types of cargo 
can be transported between any two points where loading 
and unloading of barges take place. The interest of the IWT 
company is in transporting barges with the maximum draft. 
In order to avoid the transport of empty barges, terminals 
where barges are unloaded are used also for the loading of 
empty barges at the same time. In that way, barge convoys are 
disassembled and new convoy barges are assembled at the same 
terminal. If, for some reason, transport of a barge convoy 
must be stopped and one or more barges have to be taken 
out of it and left at anchorage, the new barge convoy without 
these barges will continue its journey to the next terminal for 
unloading and loading. While some barges are transferred to 
the terminal and then loaded and unloaded, the transport of 
each barge convoy is continuously carried on. And whether 
the barge convoys are assembled or disassembled, there is also 
a need for a change of push boats at the terminals if more than 
one push boat is intended to push them.

The aim of this paper is to propose the bestNNE model 
among several options that are idenitified in the process of 
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papersin which NNs can be applied indirectly or for solving 
problems that are beneficial for IWT [5, 12].The second 
group of papers are usuallythose in which NNs are used to 
predict the values of resistance of ships or coefficients that 
are important for shipbuilding.

Couser & Mason [5] investigated the accuracy of NNs 
as prediction tools for the hull resistance of catamarans. 
The goal of the paper was to determine a predictive model 
for residuary resistance based on input values of the Froude 
number, beam-to-length ratio, draft-to-beam and length-
toslenderness ratio. The data used for the investigation 
originated from a  series of tank tests. The  authors 
demonstrated that a combination of genetic algorithms and 
artificial neural networks could be used as an optimisation 
tool for catamaran design parameters.

Vukadinovic et al. [20] proposed anNN to be used as 
the dispatcher’s decision support system. The main objective 
was to apply the NN technique to the assignment of loaded 
barges to pusher boats for the planned period of one day 
within inland waterways and to develop the dispatcher’s 
decision support system. They showed that the proposed 
NN can be used to help the dispatcher’s decision making. 
Their results could be applied to any mode of transportation.

Reich & Berai [12] created an NNE model to predict 
the propeller thrust coefficient, the propeller torque coefficient 
and the propeller efficiency. Input variables were the propeller 
pitch‒propeller diameter ratio, expended area ratio, number 
of blades, advance coefficient and cavitation number. They 
concluded that NNE model design should be done carefully, 
starting from data collection, model quality estimation, 
to solution deployment. They recommended that further 
improvement of the NNE model quality is possible by using 
advanced methods.

Radonjic and Vukadinovic [11] proposed an AIC-based 
NNE model and a single NN with two hidden layers to predict 
pushboat shaft power. These two models were compared 
on the basis of their calculated mean absolute error (MAE) 
values, root mean squared error (RMSE) values and relative 
errors. Computational results from this numerical example 
showed that the NNE definitely outperformed a single NN 
with two hidden layers.

Parks et al. [10] appliedthe NN technique to train and test 
data acquired during normal operational service of three sister 
merchant vessels. A key aspect in their paper was to determine 
NN architectures that could give close relationships between 
the input variables and shaft power. The input variables were 
the following: GPS ship speed, wave height, true wind speed, 
apparent wind direction, draft and trim.Predictions of shaft 
power were made by NNs. Their values werecompared to 
the values calculated using regression analysis on the same 
dataset.The predictions of shaft powershowed an error of 
less than 10%, while the NN showed good repeatability of 
the relationshipsbetween the input variables and the measured 
shaft power. They concluded that their method and their 
NN may be capable of providing a baseline for performance 
monitoring across a wide range of environmental conditions, 
thus allowing faster decision-making.

PROBLEM DESCRIPTION

Part of the cargo transport in which push boats are assigned 
to barge convoys has to be solved by dispatchers in operating 
centres. Fig.  1 shows an example of a  dispatcher’sdaily 
push boat to barge convoy assignment decisions based on 
experience.

Loaded barge convoys are ready to be transported by push 
boats at certain times. If there is enough power to propel 
the given barge convoy at maximum speed, a push boat will 
be assigned to thebarge convoy by the dispatcher. Otherwise, 
the dispatcher will wait for another more powerful push 
boat, ora barge convoy will be disassembledin such a way 
as to satisfy the power constraints of the available push 
boat. In Fig. 1, two push boats are available for transporting 
the first barge convoy at time t1. Since the first push boat is 
able to transport the first barge convoyon its own (∆1<Q1), 
it is assigned accordingly and the second push boat is left 
to wait for another barge convoy. At time t2, the second 
barge convoy is formed and is ready to be pushed to its final 
destination. Like a couple of hours earlier, two push boats 
are available to transport it, but the second push boat meets 
the criteria for coupling with it (∆2<Q2 and ∆2>Q3). As can 
be seen in Fig. 1, the third push boat cannot be assigned to 
any of the upcoming barge convoys until time t5. At that 
time,the fifth barge convoy is reduced to three barges in order 
to be available for the sixth push boat, and the convoy’s fourth 
barge is assigned to the third push boat.

All the dispatcher assignments in Fig. 1 are results of his 
experience,and are not confirmed bya mathematical model.
Therefore, an NNE model is proposed in this paper to help 
the dispatcher with his decision and improve the existing 
decision-making process.

Dispatchers should enter the input values of the pushed 
convoy’s slenderness ratio, length-to-beam ratio, draft-to-
beam ratio, Froude number, propeller diameter, propulsive 
efficiency and cavitation number into the NNE model to get 
the required push boat SHP. On the basis of the calculated 

Fig. 1. Example of dispatcher’s push boat to barge convoy assignment decisions
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SHP and NNE model errors, the dispatchers decide if 
the push boat will be able to carry out the transportation 
of the given barges.

DATA DESCRIPTION

Full-scale speed/power trials are performed whenever an 
IWT company has to confirm that the newly built ship has met 
its specification as regards design speed [18], whenever a new 
propeller is being installed on a push boat, and for scientific 
purposes [4]. Data from the full-scale speed/power trials are 
divided into row data and target data in this paper. Row data 
consist of all data from the trials, while target data encompass 
only the data that will be used in the process of NN training 
and the prediction performance of the NNE model. The idea is 
to separate valid target data from the data that are unnecessary 
and do not contribute to improvement of the NNE model 
results, but can increase the NN training time.

For example, all the new data in this paper consisting of 
pushed convoy speeds lower than the highest speeds (which 
can be reached at full power of the push boats’ main engines) 
will not be added to the target data. This means that there 
will be many combinations of push boats and barge convoys 
with the same SHPs, but different input data in the target 
data. Thisfurther means that the NNE model is a complex 
nonlinear prediction model.

Target data are gathered from full-scale speed/power trials 
of Serbian push boats. Some of the data are listed in [11], while 
the rest are given in [4]. Together, thesemake upthe single 
target dataset in this paper.

Input data included the following variables: pushed convoy 
slenderness ratio (length–displacement ratio or ⅓/L), pushed 
convoy length-to-beam ratio (L/B), pushed convoy draft-to-
beam ratio (d/B), Froude number (Fr), propeller diameter (Dp), 
propulsive efficiency ηD) and cavitation number (σ).The number 
of blades was not included in the input variables due to the fact 
that all propellers have the same number of blades.

The output data included the push boat shaft power 
(SHP),making the  future NNE modela model for 
the  estimation of the  power requirements in pushed 
convoys. It was assumed that the  push boat SHP was 
a function of the geometric characteristics of the pushed 
convoys,the  pushed convoy speed through water,and 
the propulsive characteristics of the push boats. The geometric 
characteristics and pushed convoy speed through water 
were represented in the first four input variables, while 
the propulsive characteristics included the last three input 
variables. Pushed convoys with the same number ofbarges 
arranged in a row and with ahigher draughtrequiremore 
power to operate than those arranged in a line. The ratios 
of the main dimensions are incorporated into the model 
as inputs accordingly [11].The last three input variables are 
added into the input dataset because the motions of pushed 
convoys areaffected also by the propulsive characteristics 
of the  push boats, and are expressed in power losses. 
The push boat SHP was taken as an output variable because 

full-scale speed/power trials were performed on the basis 
of measurements of shaft power on push boats.

The example set of input values is given in Tab. 1. [next page]
The greatest power losses are expressed via ηD and appear 

in the segment of the push boat power chain which includes 
part of the chain from shaft power (SHP)to effective power 
(Pe) (see Fig. 2). ηD is calculated as the ratio of effective power 
(Pe) per shaft power (SHP). Power losses due topropeller 
geometry and operating conditions are described by propeller 
diameter (Dp) and cavitation number (σ) [12]. Cavitation 
causes several undesirable effects [22], among which reduction 
of the propeller performance is the most important part that 
affects the value of the pushboat SHP, while the increase of 
Dp causes an increase in the pushboat SHP.

The first four input variables have been calculated by 
applying the methodology presented in [11] to all combinations 
of push boats and barge convoys in this paper. All the data in 
the target dataset are normalised by linear transformation 
to [0,1] [23].

The values of the propeller diameters were provided by [4], 
while cavitation numbers were calculated on the basis of 
the Burrill cavitation number [3].Propulsive efficiencies (ηD)
are calculated as a ratio of each push boat’seffective power (Pe) 
and each push boat’smeasured SHP. The push boat effective 
powers (Pe) were calculated from [19].

The process of designing the NNE model was divided into 
two stages. The first stage included training of NNs, while 
the second stage included validation of the NNE model. For 
the training purposes, appropriate data splitting was done. 
It was assumed that NN training over bigger datasets should 
output NNE models with smallerroot mean square error 
(RMSE) and mean average error (MAE)values, as well as 
models with smaller deviations and variations.

The target dataset was divided according to combinations 
of push boat and barge convoysinto smaller datasets with 
roughly 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% and 90% of 
all the collected target data. The number of datasets is denoted 
as N (n = 1, 2,…, 9, N = 9). These datasets were divided into 
test data and training datathat were used in the NN training 
process. The rest of the target data were included as test data. 
However, 100% of the target data were used to test the NNE 
models. Before the testing, all input data were normalised 
[23] so that they could be processed in the NNE model. Upon 
the testing, all output data were denormalised and as such they 
were analysed. The aim was to develop an NNE model that 

Fig. 2. Schematic overview of the push boat propulsion system 
(power losses expressed by ηD, Dp and σ) (Source: [4])
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would not fully depend on all the target data during model 
creation. At the same time, the new NNE model would be 
valid only if it was tested on all the target data. The validation 
process of the NNE model is in accordance with the policies 
of shipping companies, in which cargo is transported with 
fully loaded ships on rivers.

There was a total of 918 data points that formed the target 
dataset. The  scatter plots of the  target dataset with all 
the measured data are composed using the measured pushed 
convoy SHPs data (ordinate) and pushed convoy slenderness 
ratios ( ⅓/L), pushed convoy length-to-beam ratios (L/B), 
pushed convoy draft-to-beam ratios (d/B), Froude numbers 
(Fr), propeller diameters (Dp), propulsive efficiencies (ηD) 
and cavitation numbers (σ) (abscissas), as shown in Fig. 3 
[next page].

After careful observation, the  complex nonlinear 
characteristics of the measurements data are found in Fig. 3.

Division of the target dataset into smaller datasets (n) was 
done according to the following rule:
1.  Number 193 was set as the 0% of data, as these 193 data 

were initial for the creation of the rest of the target dataset.
2.  The difference between number 918 and number 193 was 

multiplied by 10% or 20% or … or 90%, then added to 193 

and rounded down to the integer to get the numbers of 
data points in each dataset n. 
Based on the previous rule, the following numbers of 

datapoints per datasets n were obtained: 266 for n = 1.339 
for n = 2.412 for n = 3.485 for n = 4.557 for n = 5.630 for 
n = 6.703 for n = 7.776 for n = 8 and 849 for n = 9.

The principle of target dataset partitioning was done in 
accordance with [21], which found that too many or too 
few samples in the training set havea negative effect on 
the estimated modelperformance, and thata good balance 
between the sizes of the training set and validation set is 
necessary for reliable estimation of model performance.

METHODOLOGY

NEURAL NETWORK ENSEMBLE METHODOLOGY

Prediction of the push boat SHP was done by usingseveral 
Feed Forward NNs. NNs were trained by using the RPROP 
learning algorithm [14]. The AdaBoost.RT algorithm [17] 
was used to combine NNs in an ensemble and to create an 

Tab.1. Example set of input values related to few pushed convoys

Length-to-beam 
ratio (L/B)

Draft-to-beam 
ratio (d/B)

Slenderness ratio 
(V ⅓/L)

Froude Number 
(Fr)

Propeller diameter 
(Dp) in meters 

(mm)
Propulsive 

efficiency (ηD)
Cavitation number 

(σ)

8.941176 0.099020 0.095382 0.065996 1500 0.270571 0.600208

8.219453 0.112414 0.109381 0.06497 1650 0.335688 0.704681

11.49316 0.112414 0.088705 0.046268 1650 0.301756 0.710474

5.481421 0.074967 0.124034 0.058131 1650 0.335095 0.639230

6.055263 0.144737 0.138876 0.134967 1600 0.399969 0.715922

10.13421 0.144737 0.101854 0.087178 1600 0.305555 0.734457

6.75614 0.096491 0.115529 0.071457 1600 0.235865 0.748878

14.21316 0.144737 0.082374 0.059132 1600 0.197835 0.751965

5.067105 0.072368 0.126561 0.062168 1600 0.208157 0.760211

10.47479 0.222743 0.114307 0.128539 1170 0.596787 0.655714

5.237397 0.111372 0.141232 0.10696 1170 0.52969 0.695191

5.915378 0.072877 0.117171 0.084462 1800 0.517824 0.559295

8.873066 0.109316 0.10288 0.100339 1800 0.558304 0.524407

25.02366 0.218631 0.066571 0.089311 1800 0.468053 0.519611

5.232484 0.109316 0.140503 0.129009 1800 0.329565 0.525384

17.74431 0.218631 0.082894 0.117491 1800 0.493101 0.509415

6.832968 0.086881 0.1112 0.086241 1800 0.256204 0.565607

5.121919 0.064661 0.121318 0.077503 1800 0.248758 0.573698

9.542507 0.086374 0.090167 0.0604 1800 0.234184 0.573168

6.77734 0.094015 0.11404 0.076667 1800 0.279898 0.786509

9.487752 0.092946 0.088939 0.056607 1800 0.279624 0.813906

14.77902 0.212222 0.091492 0.109589 1600 0.388818 0.758877

4.342943 0.106202 0.155808 0.135065 1600 0.391985 0.787975

20.89252 0.214087 0.07342 0.079085 1600 0.396488 0.797247

7.398881 0.107136 0.103749 0.0886 1600 0.400375 0.809415
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NNE model. It has been suggested in [6, 15, 16] that boosting 
techniques and particularly AdaBoostwork well with NNs.

For the purposes of modelling, Python programming 
language is used for training and testing as well as for 
weights (Wtn

) determination by the resampling technique 
[2] within the AdaBoost.RT algorithm, where tn = 1, 2, …, Tn 
is the number of potential NNE models per dataset n.

AdaBoost.RT was first outlined as an adaptive ensemble 
method by [17]. Its main difference from other AdaBoost 
algorithms is its threshold (θ), which separates correct and 
incorrect predictions. The main part of the algorithm was to 
determine weights (Wtn

) in order to improve predictions from 
separate models. The separate models are the NNs in this 
paper. The AdaBoost.RT presented in [17]does not specifically 
address the number (Tn) of NNs in any given ensemble 
model. It is obviously left to the authors to set Tn, depending 
on the  level of difficulty of the problem they encounter 
during the training of NNs. Therefore, Tn was not fixed 
before the beginning of the application of the AdaBoost. RT 
algorithm in this paper.

For the purpose of getting the best possible NNE model, 
it was decided that the best procedure for this investigation 
should contain twostages. These consisted of training and 
testing single-hidden layer NNs (NNs in the following text) 
on the different datasets described in the section “DATA 
DESCRIPTION”.

In the first stage, K-fold cross-validation [8] and a golden-
section search procedure were done to avoid overfitting, 
to determine the number Tn, to select NNs for the NNE 
model and to get a more accurate estimate of the NNE 
model prediction performance. Datasets partitioning was 
performed by K = 4 different datasets divisions. They were 
split into 3, 4, 5 and 10 consecutive parts. Each part was then 
used once as a validation and as a test set in the same time, 
while the other threeparts made the training set. Based on 
the number of training data (Ntr), the number of inputs (NI) 
and number of outputs (NO), and number of hidden nodes 
(Nh) was calculated by the methodology presented in [13, 20] 
for every dataset. As NI and NO, were fixed, the architecture 
of the NN per dataset depended only on Nh. Calculation of 

Fig. 3. The nonlinear characteristics of measured full-scale speed/power trials data
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more Nh per each dataset n meant that more NNs per dataset 
n were potential candidates for the NNE model.

Following the large number of NNs generated as a result 
of data splitting, dataset partitioning and Nhcalculation, only 
carefully selected NNs were selected to be trained. This was done 
due to avery possible scenario that could includethe training of 
NNs that would never enter the NNE model, which would also 
be a waste of time in the process of creating the NNE model. 
The resulting numbers of selected NNs and sets of possible NNs 
that could enter the NNE model per dataset were obtained by 
the golden-section search procedure [13]. Thiswas the input 
for the determination of Tn in the AdaBoost.RT algorithm.

Based ongolden-section point calculation, each NN was 
trained 10 times with 3, 4, 5 and 10 different combinations 
of trainedparts and tested partsthat were made up with 
the  help of bootstrap sampling  [7]. The  average RMSE 
value(of  10  NNs of the  same architectures) calculated 
overthe trained datawasinput for the calculation of the AIC 
numbers [13] of one NN architecture per part. With the help 
of the AIC numbers, the best NN architecture per part as well 
as a collection of trained NNs per part were gathered to form 
a set of trained NNs per one part (SnK). Since there were 4 parts 
per dataset, 4 SnK setswere formedafter the application of 
the golden-section search procedure. The intersection of four 
different sets (SnK) gave another set, the final set (Sn) ofpotential 
NN candidates for the NNE model within a datasetn. The first 
stage is explained in Fig. 4.

In the second stage, the AdaBoost.RT algorithm was 
applied to create the best NNE model per each dataset n. First, 

set P(Sn) was created for all n. Each P(Sn) was the collection 
of all subsets of Sn sets. The number of possible NNE models 
per each dataset n (CTn

) was equal to the number of different 
combinations of NNs in each dataset n. It is defined by 
the following Eq. (1):

           (1)

Dataset n was split following a 72/28 rule, where 72% of 
the data were used for training NNs, while 28% of the data 
were used as test data. Each NN from P(Sn) was trained to get 
the functional relationship between the inputs and output 
(ftn

(x)). ftn
(x) is used to get the weights of the NNs (Wtn

) with 
the AdaBoost.RT algorithm. The AdaBoost.RT algorithm 
applied with the previous assumptions is as follows: 

START (dataset n, cTn
-th combination)

Input: (x1, y1), …, (xin
, yin

), …, (xmn
, ymn

), x, y  ;
Where:
xin

 = ( in
⅓/Lin

, Lin
/Bin

, din
/Bin

, Frin
, Dpin

, ηDin
, σin

)
yin

 = SHPin
Initialise the distribution for all in: tn

(in) = 
Set the threshold: θ = 0.07

FOR tn = 1, 2, …, Tn
IF tn = 1
Select the training data based on random numbers End IF
IF tn > 1
Select the training data based on distribution tn

(in) End IF

Fig. 4. An example of a derivation of one set (Sn) from K-fold cross-validation and golden-section search procedure applied together with NN training in the first stage
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Train one hidden layer NN with a maximum of 100 
iterations before calculation of total error of NN. If total 
error doesnot drop in the next three 100 iterations, stop NN 
training, get the values of weights where the total error was 
minimum and obtain ftn

(x) as

    (2)
where:
wIh – weights between I-th input neuron and h-th hidden 
neuron (randomly initialized at the network configuration)
whO – weights between h-th hidden neuron and O-th output 
neuron (randomly initialized at the network configuration)
wbh and wbO – bias parameters (always have value of 1)
ftn

(x) − push boat SHP function based on ⅓/L, L/B, d/B, Fr, 
Dp, ηDand σ
s − sigmoid activation function
Nh=Nhtn

Calculate absolute relative error for each dataset example as:

       (3)

Calculate the error rate of ftn
(x)

        (4)

Calculate ωtn 
= εc

tn
, where c is a power coefficient (e.g. linear, 

square or cubic)
Update distribution tn

(in) as

    (5)

Ztn
 is a normalisation factor chosen such that tn+1 will be 

distribution
END loop
Output the final weights

         (6)

       (7)

where fn(x) is the push boat SHPfunction based on ⅓/L, L/B, 
d/B, Fr, Dp, ηD and σ.

The AdaBoost.RT algorithm was applied up to CTn times in 
order to form up to CTn NNE models. Each NNE modelwith 
the minimum RMSEn and MAEn valueswas declared to be 
the best NNE model among all of the NNE modelsthat were 
trained on each dataset n. TheRMSEn and MAEn values are 
calculated from Eq. (8) and Eq. (9). 

    (8)

      (9)

Calculations of the RMSEn and MAEn values are performed 
over the target dataset.

There were a total of 9 potentially best NNE models, 
each created as a result of training the NNs and applying 
the AdaBoost.RT algorithm on every dataset n. The procedure 
for the creation of one NNE model per dataset n is presented 
in Fig. 5. [next page]

In an effort toreduce the number of iterations in the second 
stageand to speed up the procedure, the following rule was 
adopted: If the RMSEn and MAEn values are equal to or lower 
than the threshold RMSE and MAE values, NN training is 
interrupted, and the best NNE model at this point is taken 
as the best NNE model overall and the procedure of getting 
the best NNE model is stopped. Threshold RMSE and MAE 
values were set just after the end of the first stage and they were 
70 kW and 30 kW respectively. The pseudo-code of the entire 
procedure for getting one best NNE model is presented in 
Fig. 6. [next page]

NNE modelling was done separately by using iterations in 
which different datasets were used. As soon as an acceptable 
result had been reached by one of the previous datasets, 
training and testing of NNs were stopped and the NNE 
model was created.

This procedure represents an innovative alternative to 
present datamapping with NNs in waterway transportation. 
It is believed that this procedure will improve the results 
obtained by training only single NNs.

DATA EVALUATION

In the SNNE setthere area possible 9 NNE models that are 
the best for each dataset n. Only those NNE models with 
RMSE and MAE values lower than 100 kW and 50 kW 
respectively will be analysed by graphical and numerical 
methods. Deviations and variations of push boat SHPs from 
a linear plot and the randomness and unpredictability of 
eachNNEmodel will be analysed by graphical methods, while 
theRMSE, MAE and R-squared valuesof each NNE model 
(R2

n), presented in Eq. (12),will be the focus of the numerical 
method. In this way, anNNE model that may have lower 
RMSE and MAE values but higher variance of the data than 
some other NNE model in theSNNE set will be compared to 
an NNE model with high RMSE and MAE values but lower 
variance of the data.

R-squared of each NNE model (R2
n) measures how close 

the predicted SHPs are to the linear plots. It also indicates 
the variation of the data and is defined as the ratio of sum 
of squares regression (SSR), as calculated from Eq. (10) and 
Eq. (11) and the total sum of squares as in Eq. (12).
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     (10)

       (11)

       (12)

The graphical method includes comparison based on 
the prediction plots and residual plots per NNE models.

RESULTS AND DISCUSSION

In this section, the results from training the NNs and 
the application of the AdaBoost.RT algorithm are presented.

The computational results are presented and discussed in 
an effort to assess and analyse the efficiency of the best NNE 
model. The generalisation abilities of all the NNE models 
are assessed from two points of view: the graphical method, 
which includes the prediction plot and residual analysis, 
and numerical methods that include the RMSE value (see 
Eq. (8)),MAE value (see Eq. (9)) and theR-squared value (see 
Eq. (12)).

Eight NNE models were gathered in theSNNE set. The RMSE 
and MAE values of each NNE model from SNNE set are given 
in Tab. 2.

Fig. 5. Procedure for creation of one NNE model per dataset n

Fig. 6. Procedure for getting the best NNE model from the input and output data
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From Tab. 2, it can be observed that last three NNE models 
(n = 6, 7, 8) can be subjects forcomparison by the graphical 
and numerical methods in this paper.

PREDICTION PLOT ANALYSIS

Prediction plots are used to show relationships between 
the actual push boat SHPs and NNE models SHP predictions.
The desired relationships are assumed to be linear, meaning 
that the actual SHPs are equal to the predicted SHPs. They 
are presented with linear plots in each prediction plot as red 
lines. The predicted SHP values are along the Y-axes while 
the actual SHP values are along the X-axes. They are visualised 
as scatter plots. Each dot on the scatter plot represents one 
actual SHP along the X-axis and one predicted SHP along 
theY-axis. The predictions from the entire target dataset are 
plotted and visualisedin each plot.

Fig. 7 representsthe prediction plots that refertothe last 
three NNE models (n = 6, 7, 8).

In each of the three prediction plots (see Fig. 7), there 
are dots that deviate more or less from the red lines. Going 
from Fig. 7 a) to Fig. 7 c), the deviations are smaller, pointing 
to the already assumed fact that NNE models created over 
a larger amount of data have smaller deviations. In the case of 
SHP predicton, the NNE model created over 80% of the data 
has the smallest deviations among all NNE models. The lowest 
variance of the the data along the desired response red line 
in Fig. 7 c) indicates that the last NNE model (n = 8) has 
the highest accuracy of all the NNE models. The variations 
amongthe data are also the smallest in the NNE model created 
over 80% of the data. In fact, as the percentage of data for 
creation of the NNE model rises, the variation between 
the data reduces. Consequently, the last NNE model has 
the highest precision of all the NNE models.

RESIDUAL ANALYSIS

Residual plots validate the randomness and unpredictability 
of the  NNE models in this paper. A  residual indicates 
the difference between the actual SHP and predicted SHP.
Fig. 8 illustratesthe residual plots of the last three NNE models 
(n = 6, 7, 8).

From Fig. 8 [next page], it can be seen thatthe dots, in 
general, are clustered around the  lower single digits of 
the residual axis. As n increases, the accumulations around 
the red lines increase. This suggests that the NNE model 
created over 80% of the data has the lowest residuals among 
all three analysed. None of the NNE models is symmetrically 
distributed and they all have outliers, which means that all 
three NNE models have room for improvement in terms of 
residuals. Indeed, a specific curve that could fit the residuals 
cannot be found in Fig. 8 c).The last positive thing about each 
NNE model is that they do not have clear patterns. From 
the observation of the residual graphs, it can be concluded 
that all three residual plots are stochastic because the points 
are random and unpredictable due to the lack of any observed 
specific curve, but the residuals are the smallest in Fig. 8 c). 
As a conclusion, the best fit for the estimation when it is 
evaluated by residual analysis is the last NNE model.

NUMERICAL EVALUATION METHODS

A  summary of the  analysis by numerical evaluation 
methods is presented in Tables2 and 3.

From Tab. 3 [next page], it can be observed that R-squared 
analysis for the n = 4, 5, 6, 7 and 8 NNE models has a good 
fit with values more than or equal to 0.92. However, if 
the evaluation is examined further, the last NNE model (n = 8) 
has a value of 0.98, which is better than the other NNE models. 

Fig. 7. Prediction plots of pushboat SHP estimation using NNE model created by training NNs over 60%, 70% and 80% of data

Tab. 2. RMSE and MAE values of all 8 NNE models

n 1 2 3 4 5 6 7 8

Number of NNsin each NNE model 2 2 3 2 2 3 4 2

NNE model (Nhs per n) (8,9) (8,10) (9,10,12) (13,15) (14,16) (16,17,18) (16,17,18,20) (19,22)

RMSE(kW) 233.19 180.31 154.08 103.17 99.80 88.53 89.45 45.22

MAE (kW) 148.42 107.05 91.96 57.94 55.50 46.08 34.69 24.95
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For the MAE evaluation (see Tab. 2), the last NNE model 
(n = 8) has the lowest error of 24.95 kW. This was followed 
by the other NNE models, among which the first five models 
didnot satisfy the predefined MAE requirements.

The lowest RMSE value of 45.22 kW (see Tab. 2)was found in 
the last NNE model (n = 8). The second lowest RMSE value of 
88.53 kW was from the NNE model created over 60% of the data 
from the target dataset, while the third lowest RMSE value of 
89.45 kW was from the NNE model created over 70% of the data 
from the target dataset. The other NNE models did not come 
into analysis as their RMSE values were above 100 kW except 
for the fifth NNE model, whose value of RMSE is 99.80 kW but 
whose MAE value is higher than 50 kW and which therefore 
doesnot satisfythe predefined conditions for analysis.

From the analysis performed by graphical and numerical 
methods, the last NNE model (n = 8) is selected for prediction 
of pushboat SHPs due to having the lowest RMSE, MAE and 
R-squared values of all the NNE models as well as the lowest 
variations of predicted SHPsand lowest residuals.

However, after a careful analysis of the best NNE model, 
caution regarding some of the predicted SHPs should be taken, 
particularly considering the data pointsat which the MAEs 
are above 200 kW (see Fig. 8 c). This is the major weakness 
of the best NNE model.

The other weaknesses refer to the RMSE and MAE values 
if these are compared to the RMSE and MAE valuesof similar 
NNE models. One such NNE model was found by [11] with 
RMSE and MAE values of 20.45 kW and 9.94 kW respectively.
Although [11] found lower RMSE and MAE values than 
thevalues in this paper, it can be concluded that the predicted 
SHPs from the best NNE model in this paper have reasonable 
accuracy if the number of data and push boat operation only 
at full power are taken into account.

CONCLUSION AND FURTHER WORK

In this paper, Neural Network Еnsembling with 
the AdaBoost.RT algorithm for the prediction of push boat 
SHP is presented to improve the operational efficiency of IWT 

companies and to help dispatchers in theirdaily decision-
making processes. Full-scale speed/power trials are arranged 
in a dataset from which the target dataset is derived. The target 
dataset is used for training of NNs which are then ensembled 
in one NNE model with the AdaBoost.RT algorithm.

Eight different NNE models were created based on division 
of the target datasetinto 8 smaller datasets. Three models were 
chosen for analysis by graphical and numerical methods.
On the basis of variations of SHPs in the prediction plots 
and residual plots and RMSE, MAE and R-squared values, 
a NNE model created using 80% of the data was declared as 
the best NNE model.

The model has two major weaknesses, however. One refers 
to a couple of data pointerrors representing deviations from 
the predicted SHPs, while the other refers to the comparison 
of the RMSE and MAE values to the same values obtained 
by the model found in [11]. Both weaknesses suggest that 
the  limitation of the RMSE and MAE values might be 
decreasedbelow the already defined threshold values.

By using the  NNE model, effects on the  IWT like 
punctual arrivals of cargo, costs of transport and profit of 
IWT companies could be investigated. Indirect benefits 
to transport such asincreased environmental protection, 
better energy efficiency and better utilisation of barges and 
push boats should emerge also from further investigation. 
Overall, it improves customer satisfaction, and eliminates 
the movement of empty transport vehicles, for example.

The model and solution methodology given in this paper 
could be a very useful practical tool for dispatchers to make 
the right decisions about the assignment of push boats to 
barge convoys. They can use the best NNE model as a decision 
support tool to solve their daily assignment tasks, test different 
solutions related to the planning, routing and scheduling of 
pushed convoys, and choose assignments which are suitable 
for their own needs at any given moment. Therefore, the part 
ofthe decision-making related to correct assigning according 
to the push boat SHP in the IWT company could be improved 
by applying the proposed decision support tool.

Further research should be undertaken in the following 
two directions: additional data and new methodologies.

Additional data from the full-scale speed/power trials 
could be incoroporated into the target dataset. These data 
would refer not only to pushed convoy speedsat full push 
boat power, but also to any pushed convoy speed. Overall, 

Fig. 8. Residual plots of pushboat SHP estimation using NNE model created by training NNs over 60%, 70% and 80% of data

Tab.3. R-squared values of each NNE model

n 1 2 3 4 5 6 7 8

R-squared 0.58 0.75 0.82 0.92 0.92 0.94 0.94 0.98
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this would contribute to better knowledge of pushed convoy 
arrival times.

New methodologies include machine learning algorithms. 
Important factors like the complex and finite datasets that 
are contained in this paper are a good starting point for 
the application of machine learning algorithms.
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