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Abstract

Owners of vessels are interested in the lowest possible operating costs. These costs are mainly related to fuel consumption 
during navigation. To manage it rationally, the main decision-making problem is selecting the proper parameters of the 
ship’s propulsion system during navigation. In practice, operators of ships equipped with controllable pitch propellers 
controlled in manual mode make a selection of the commanded outputs based on their own knowledge, intuition, 
and all accessible information regarding sea conditions. In many cases, their decisions are unreasonable or incorrect. 
Therefore, it would be desirable to support their decision-making in selecting the commanded outputs.
For this reason, we have decided to develop a decision support system in the form of an expert system. This computer-
aided system supports the selection of the commanded outputs of the ship’s propulsion system. The most important 
component of this system is the two-criteria optimization model, allowing the rational management of the ship fuel 
consumption and navigation time.
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introduction

Rational management of resources is the most important 
challenge facing our civilization in the modern world. It is 
also the fundamental postulate of the micro-economy. The 
immediate reason why various economic operators must 
behave rationally is the rarity and depletion of accessible 
resources. In the management of industrial processes, the 
operators use various resources, such as: 

– �human resources - people with their knowledge and 
practical skills, 

– �natural resources - land with its riches (hydrocarbons), 
water, air, 

– �artefact resources - tools, machines, buildings, financial 
resources.

The problem of rational resource management also affects 
the maritime industry, including the fleet carrying out maritime 
transport tasks. Owners of vessels such as commercial, 
passenger and fishing vessels, tugs, etc. are interested in the 
lowest possible operating costs. These costs are mainly related 
to the use of material resources, e.g. fuel consumption during 
navigation and the navigation time to reach the required 
destination. To manage these resources rationally, the main 
decision-making problem is selecting the proper parameters of 
the ship’s propulsion system during navigation. This, in turn, 
can be reformulated as an issue of the optimal selection of the 
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operating parameters (called the commanded output) of the 
ship’s propulsion system, containing a source of mechanical 
power (engines), and propulsors transforming this power into 
propulsive force. The set-up of the propulsion system depends 
on the vessel size and type of operation.

In practice, two main types of propulsors are used for 
the propulsion of vessels: fixed pitch propellers (FPP) and 
controllable pitch propellers (CPP). A fixed pitch propeller 
is a propulsor with the pitch fixed. To increase or reduce the 
vessel speed, the propeller’s rotational speed is increased or 
reduced. A CPP varies the angle of each blade (pitch) to control 
the amount of thrust produced by the propulsor. To increase or 
reduce the vessel’s speed, the CPP pitch is altered. In the variable 
load conditions of navigation, this property allows for optimum 
use of the ship’s engine power by selecting the propeller thrust 
force according to the ship hull resistances and operation in 
the area of maximum efficiency of the ship’s propulsion system.

The CPP type of propulsor is most common on vessels 
where it is necessary to sail efficiently at two different load 
conditions, i.e. towing or running free, and on ships that sail 
to ports with limited or no tug assistance. Therefore, a CPP can 
mostly be used on tugs, cruise ships, ferries, cargo and fishing 
vessels. The pitch and rotational speed of the CPP may be 
controlled independently of one another, or together through 
a speed/pitch ratio controller. There are two modes of setting 
up commanded outputs:

– �programmed control mode, when the speed/pitch ratio 
controller is utilized,

– �remote manual mode, when the CPP pitch and rotational 
speed are controlled separately. 

The programmed control mode of propulsion control 
automatically provides the optimum pitch and rotational 
speed combination for any given speed. The speed/pitch ratio 
controller calculates the CPP pitch and rotational speed that 
are required to achieve the desired ship speed under ideal 
conditions. 

The remote manual mode is used in vessels that operate 
mainly in different load conditions, for example harbour tugs, 
fishing vessels, and sailing vessels running under an engine. 
Selection of the commanded outputs of their ship’s propulsion 
system is made by setting up both the engine rotational 
speed and the CPP pitch. Combinations of two manipulated 
commanded outputs to realize the desired ship motion are 
very complex and complicated. Moreover, the permissible 
ranges for these outputs are limited by the maximum speed to 
be obtained from the ship engine and by the minimum speed 
ensuring the vessel’s maneuverability. These ranges are not 
fixed and depend primarily on sea conditions, in particular 
the wind speed and direction and the sea current.

As was mentioned earlier, to manage ship fuel consumption 
and the navigation time to reach the required destination 
rationally, it is necessary to select proper commanded outputs 
of the propulsion system, that is, the engine rotational speed 
and the CPP pitch. To illustrate these relationships, we consider 
three options:

– �moderate fuel-efficient navigation and ship speed is 
desirable, 

– �navigation with the lowest fuel consumption is desirable, 
whereas the time to reach the required destination is not 
important,

– �navigation at the highest possible speed is desirable (e.g. 
in an emergency); in this case, fuel consumption is not 
taken into account.

In the presented options, both resources to be managed, 
that is, the fuel consumption and  navigation time, are 
opposed to each other. In our opinion, it is desirable to find 
a compromise solution that will allow us to plan navigation 
more flexibly. In practice, the operators of ships equipped with 
the CPP controlled in manual mode make a selection of the 
commanded outputs based on their own knowledge, intuition, 
and all accessible information regarding sea conditions. In 
many cases, their decisions are unreasonable or incorrect. 
Therefore, it would be desirable to support their decision-
making in selecting the commanded outputs. 

For this reason, we have decided to develop a decision 
support system in the form of an expert system.  This computer-
aided system supports the selection of the commanded outputs 
of the ship’s propulsion system. The most important component 
of this system is the two-criteria optimization model, allowing 
the rational management of the ship’s fuel consumption and 
navigation time.

Literature review

In the bibliographic resources available, there are many 
publications that present the application of optimization 
methods to various maritime problems. These methods have 
been used for various aspects of the maritime industry as well 
as different stages of the life cycle of vessels, including, inter 
alia, optimization of:

– �routes and schedules of merchant ships from the 
point of view of travel time to the destination and fuel 
consumption,

– �design of offshore floating units, including the design of 
the ship’s hull and propulsion,

– �ship’s operation and maintenance.
To compete with large consortia and attract new customers, 

many shipping companies have started consolidating their 
efforts. Therefore, these companies need to develop new 
strategies for planning efficient routes and ship schedules. 
Some decisions that must be taken by shipping companies 
are contradictory in their nature. However, the existing 
models presented in the literature usually combine conflicting 
objectives into a single objective function, which aims to 
minimize costs. Such an approach does not allow the conflicting 
nature of certain cost elements to be taken into account, which 
additionally reduces the possibilities for analyzing relevant 
compromise solutions.

To avoid this shortcoming, the study [1] proposed a multi-
objective mixed non-linear optimization model for the vessel 
scheduling problem that took all the main cost components 
presented in the literature into account and divided them 
into two opposite groups. The original nonlinear model was 
linearized by discretizing the vessel sailing speed reciprocal. 
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The Global Multi-Objective Optimization Algorithm was 
developed to obtain the Pareto Front vessel schedules.

The paper [2] presents the optimization of the ship’s 
shipping route based on the dynamic programming method. 
The optimization was carried out in accordance with the 
minimum fuel consumption strategy, taking into account 
the ship’s movements due to sea conditions. The ship’s voyage 
was parameterized as a multi-stage decision-making process 
to formulate a dynamic programming optimization problem. 
Waves and wind conditions were estimated for each route 
segment based on weather forecasting maps, then seakeeping 
related indexes and fuel oil consumption were computed taking 
into account wave-induced ship motions and added resistance.

In [3] the authors pointed out that the majority of published 
works on the optimization of the ship’s shipping route almost 
exclusively use a single-objective optimization approach, 
making it practically impossible to successfully achieve safety 
and economy-related goals. Their method represents an attempt 
to develop such solutions by applying an evolutionary multi-
objective optimization to pursue three objectives: minimization 
of the risk of collision, minimization of fuel consumption due 
to collision avoidance maneuvers, and minimization of the 
extra time spent on collision avoidance maneuvers with regard 
to autonomous surface ships. 

Instead, a similar method of optimization but with regard 
to the sailboats in [4] has been used.

Issues concerning multi-objective optimization of offshore 
floating units, including the design of the ship’s hull and 
propulsion are presented in many publications as well. For 
example, in [5]shipping companies spend good efforts in 
improving the operational energy efficiency of existing ships. 
Accurate fuel consumption prediction model is a prerequisite 
of such operational improvements. Existing grey-box models 
(GBMs a genetic algorithm-based gray-box model for predicting 
the ship’s fuel consumption based on ship operation data was 
proposed. The methodology of model development consists of 
a ship’s fuel consumption modeling procedure based on the 
basic principles of the ship’s propulsion, a GA-based estimation 
procedure, and a  performance assessment procedure. 
According to the paper’s authors, the proposed model provides 
a more reliable relationship between the fuel consumption rate 
of the ship and the factors affecting it than existing models. 
Unfortunately, this model has two major deficiencies: it has 
been tested for only one ship and neglects the impact of hull 
and propeller biofouling.

The authors of the paper [6] proposed the use of different 
methods of single- and multi-objective optimization of the 
specific characteristics of a liner shipping service. In particular, 
they proposed a multi-objective optimization model based on 
maximizing profit, minimizing CO2 emissions and minimizing 
SOx emissions, for which all components of the substitute 
objective function are a function of the ship’s speed.

Many publications, in turn, are dedicated to issues of the 
ship’s design process, in a particular selection of the optimal 
shape of a hull, the geometry of a propeller, or the cooperation 
of the hull‒propeller system.

The parametric design and multi-objective optimization of 
ships under uncertainty applying the Holistic Optimization 
Design Approach are presented in [7]. The developed 
optimization procedure begins with setting up a detailed 
parametric model that captures both the external and internal 
geometric characteristics of the ship, along with the integration 
of several numerical tools. This allowed the evaluation of 
a multitude of merit functions and design constraints, all as 
part of the optimization problem.

Multi-objective surrogate-based hull-form optimization 
using high-fidelity Reynolds-Averaged Navier‒Stokes Equations 
is presented in [8], whereas computational fluid dynamics-
based hull form optimization using the approximation method 
is reported in [9] and [10]. To quickly obtain practical ship 
forms with good resistance performance, the optimal design 
method of ship forms by using the non-linear programming 
method is presented in [11].

A  global view for the multi-objective combinatorial 
optimization (MOCO) problems in ship design, where the 
main focus is on evolutionary computation, particularly 
genetic algorithms, and posterior evaluation of Pareto-optimal 
solutions, is presented in [12]. A two-stage hybrid approach 
is proposed for an extremely hard MOCO problem in ship 
design, the subdivision arrangement of a ROPAX vessel. 
A multi-objective genetic algorithm technique is employed 
in the first stage, which enables the combinatorial tree to be 
explored, resulting in better solutions for the MOCO problem 
in a reasonable processing time. In the second stage, a classical 
multiple attribute making technique is used to determine the 
ranking order of the Pareto-optimal solutions. The application 
of the proposed approach was explained through a real case 
study from ship design.

Attempts are also made to use multi-objective optimization 
methods to design the ship room arrangement. For example, 
a method combining systematic layout planning and a genetic 
algorithm to optimize the cabin placement within ships is 
presented in [13], [14], [15], whereas application of the particle 
swarm algorithm to optimize the ship’s vertical passage layout 
problem is presented in [16].

The optimal ship power plant solutions for different fuel 
types by applying cost, emission, and safety objectives based 
on the product life-cycle are analyzed in [17]. For this purpose, 
a two-objective optimization method was used to determine 
the optimal configurations of the cruise ship’s power plant, 
taking into account the actual operational profile of the ship 
and several design parameters of its energy system. The results 
obtained showed, inter alia, that the cruise ship’s power plants 
with dual-fueled engines working with natural gas show lower 
life-cycle costs and emissions while demonstrating a level of 
system safety comparable to the basic configuration of a power 
plant.

The design method proposed in [18] provides a comprehensive 
approach to multi-objective optimization of the hull–propeller 
system of a ship. Two objective functions, i.e. lifetime fuel 
consumption and operating cost functions, are taken into 
account. An evolutionary algorithm based on NSGA-II was 
adopted. The results showed that the proposed method is 
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the right and effective approach to finding Pareto optimal 
solutions distributed uniformly and is able to improve both of 
the objective functions significantly and other performances 
of the system.

The paper [19] presents a  parametric model of the 
ship’s propeller geometry which, in combination with the 
nondominated sorting genetic algorithm II, was used to 
optimize the ship’s propeller profiles. The radial distribution 
functions of the propeller pitch and other propeller components 
were varied. According to the authors of this paper, the 
optimization procedure presented can provide a well-balanced 
starting point for the design of high-efficiency propellers, while 
meeting the conflicting requirements on cavitation inception 
and other factors characterizing the operation of the propeller.

The work [20] presents ideas and an assessment of two 
methods using evolutionary algorithm techniques to optimize 
the marine propeller from the point of view of its cavitation. 
The particle swarm optimization (PSO) algorithm was used 
in the multi-objective optimization. Three PSO algorithms 
were developed and tested to optimize four design solutions 
of marine propellers for different types of ships. The results 
were evaluated by a study of the generation medians and the 
Pareto front development.

In [21] Multi-objective Particle Swarm Optimization was 
applied to achieve the effective shape of the ship’s propeller. 
Maximizing efficiency and minimizing cavitation were chosen 
as partial optimization objectives.

The paper [22] proposes a design solution for a high-speed 
ship propeller. A specially developed optimization procedure 
was used and the necessary data were obtained from studies of 
reduction models carried out in the towing tank. The propeller 
design is solved using a multi-objective approach to numerical 
optimization and combines the Boundary Elements Method, 
a viscous flow solver based on the Reynolds-Averaged Navier‒
Stokes Equations approximation, a parametric 3D description 
of the blade, and a genetic algorithm.

Relatively few publications are available related to the 
multi-objective optimization of the ship’s operation and 
maintenance problems. For instance, a hybrid multi-criteria 
decision making and optimization approach to the issue of 
support-and-repair ship allocation on a deep-sea route is 
presented in [23]. This approach was based on an aggregation of 
evaluation information of quantitative criteria (i.e. weight and 
economics) and qualitative criteria (i.e. repairability, reliability, 
and convenience). The authors built a mathematical model 
of the allocation of this equipment in the form of a mixed-
integer nonlinear model. A removal strategy based on a greedy 
algorithm modifies impossible solutions. According to the 
authors, the proposed method achieves better solution accuracy 
and global search performance than three widely used penalty-
based methods by several test instances generated randomly. 
The NSGA-II algorithm based multi-objective optimization 
approach to arrive at an optimum maintenance plan for the 
vast variety of machinery to improve the average reliability of 
a ship’s operations at sea at minimum cost is presented in [24].

The analysis carried out here of the issues related to the 
application of multi-objective optimization methods to the 

various problems that arise in the operation and design of 
ships shows that:

− �this concerns a wide range of maritime industry areas, 
for instance: optimizing the ship’s routes and schedules 
[1]-[6], design of the ship’s arrangement [7], [12]-[17], hull 
and propeller shape [8]-[12], optimizing the ship’s hull 
and propeller cooperation [18]-[22], and optimizing the 
maintenance process [23], [24],

− �these methods are based on analytical models, for example 
[1], [17], [25] or numerical models, for example [12], [19], 
[22], and in the majority, they are parametric studies, 
where data were obtained from the ship’s historical logs 
or specifications of the existing ships,

− �these methods used various optimization algorithms, for 
example: exact algorithms in [1], [17], [25], approximation 
algorithms in [9], and metaheuristic algorithms 
(evolutionary algorithm [18]; genetic algorithm [13], [14] 
[15]; particle swarm optimization [16], [20]).

Unfortunately, from the perspective of the problem discussed 
in this paper, i.e., supporting the selection of the commanded 
outputs of the ship’s propulsion system, the literature review 
performed found no methods based on data collected during 
the planned sea trials regarding ship fuel consumption and 
speed prediction.

Computer-aided system supporting  
the selection of the commanded outputs

In the most general sense, selection of the commanded 
outputs considered as the decision-making problem can be 
formulated as follows: what should be the CPP rotational speed 
and pitch to ensure both the desired fuel consumption necessary 
for the ship’s propulsion and the ship’s speed for the observed 
meteorological conditions at sea.

To build an expert system supporting the selection of the 
commanded outputs, it is necessary to pre-define the form 
of functions connecting the presented parameters. The form 
of these functions is very important because it determines 
the further actions associated with the essential elements 
of the developed decision support system, including data 
acquisition and function mapping. The analysis presented in 
[26] showed that the most useful solution to do this is the use of 
a mathematical apparatus based on artificial neural networks 
(ANNs) and the theory of multi-criteria optimization.

The developed expert system supporting the selection 
of the commanded outputs consists of the following main 
components:

− �a data acquisition module,
− �a module of the ANN functions, and
− �a module of the commanded output selection.
Data acquisition module
The main tasks of the data acquisition module are:
− �determination of the developed system variables,
− �acquisition and collection of relevant data necessary for 

the building of the ANN functions.
In line with the postulate for rational use of resources, the 

fuel consumption necessary for the ship’s propulsion and the 
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ship’s speed were taken as the system output variables.
As the system input variables, the following factors were 

taken into account:
− �the operating parameters of the CPP, namely its rotational 

speed and pitch,
− �the parameters affecting the ship’s motion, the values 

of which are subjected to change with variations in sea 
conditions.

For the building of the ANN functions, the following 
variables were taken into account (Table 1):

− �input variables: ship’s engine rotational speed, CPP pitch, 
wind direction, wind speed, state of the sea, tidal current 
direction, and tidal current speed,

− �output variables: hourly fuel consumption rate and 
instantaneous ship speed over the ground.

To verify the correct selection of the commanded outputs, 
the torsional torque of the drive shaft was used as the constraint 
in the optimization module. Therefore, it was decided to 
measure a torque on the driveshaft to determine: a torque and 
minimum engine rotational speed values when friction clutch 
slipping is detected, and the maximum torque value when 
exceeding the permissible gear oil temperature is observed 
during long-term operation of the ship’s propulsion system.

A detailed analysis of the factors affecting the ship motion 
and the method of selecting the system variables are presented 
in [26] and [27].

To collect the relevant data necessary for the construction of 
the ANN functions, we conducted a dedicated experiment at sea 
on a ship equipped with a two-blade CPP. The experiment was 
carried out on the ship Pogoria launched in 1980. Her length 
overall is 40.59 meters and her width is 8 meters. Pogoria’s 
propulsion system consists of a 255 kW main engine, which 
drives a CPP with a 356 rpm nominal rotational speed through 
a 1:4.5 reduction gear ratio. This experiment was conducted 
with the engine as the main source of power (without using 
sails) for various conditions at sea. To obtain suitable data, 
we used various navigational and meteorological instruments 

aboard the ship, and a specially developed measuring device 
for measuring fuel consumption and shaft torque.

The data necessary for building the ANN functions were 
obtained from 315 observations carried out during sea trials 
that lasted nearly two years. A total of 18 variables were 
recorded and 11 variables were used to construct the ANN 
functions. The remaining parameters were used to check and 
verify the correctness of the collected data. The experiment 
resulted in a dataset that was converted to the output and input 
values of the ANN models.

More information concerning the measuring devices and 
procedures of the sea trials can be found in [27], and the 
detailed description of the tested vessel in [28].

During the long-running sea trials, it was noted that the 
occurrence of hull biofouling has a significant impact on ship 
speed reduction. Therefore, we decided to include this factor 
as an additional input variable named ‘time since the last 
docking of the ship’ (Table 1). More information regarding 
the biofouling phenomenon and the influence of the biofilm 
layer on the ship hull resistance is presented in [29].

The module of ANN functions
As was mentioned, to build a  computer-aided system 

supporting the selection of the commanded outputs, it is 
necessary to build ANN functions connecting the selected 
input and output variables. Such functions allow us to solve 
problems formulated not very well formally and, to replace 
the ‘manual’ process of building functions with a network 
learning process. In [30] Authors stated that the ANN model 
could supply a relatively high determination coefficient as 
compared between predicted results and experimental data, 
showing that the ANN model could have a good ability to 
predict the engine behaviors with an accuracy higher than 95%.

The STATISTICA software was used to assess the quality of 
the collected dataset necessary for the construction of the ANN 
models. A central agglomeration procedure and six combinatorial 
methods were used to analyze the correctness of the factor space 

Tab. 1. Variables used in two-criteria optimization model

Type of variable Variable name Variable 
identifier

Ranges of variable Observed values 
(taken into account 

in optimization 
simulation)min max

Decision-making 
variables (commanded 

outputs)

rotational engine speed [rpm] X1 from 1000 to 1800 with steps of 50

pitch of CPP [pitch scale] X2 from 2 to 18 with steps of 1

Observed variables 
(conditions of sea  

and ship hull)

wind direction angle in relation to the longitudinal  
axis of the ship [°] X3 –90 90 –90

wind speed [knot] X4 0 40 17

state of the sea [degree in Douglas scale] X5 0 10 4

tidal current direction angle in relation  
to the longitudinal axis of the ship [°] X6 –90 90 –15

tidal current speed [knot] X7 0 10 1

time since the last docking of the ship [months] X8 0 24 8

Output variables
hourly fuel consumption rate [dm3/h] X1obs 2 60

to be calculated
instantaneous speed over the ground [knot] X2obs 2 12
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structure. In the considered space, all data were separated by the 
metrics that proved their appropriate selection [31].

As a rule, the data processed employing the ANN techniques 
are derived from observations and therefore they cannot be 
entered into networks directly. For this reason, data preparation 
by using the normalization and standardization techniques 
to rescale the input and output variables prior to training 
neural network models was applied. In particular, a linear 
normalization with a 10% stock in the range of 0.1 to 0.9 for 
data with positive variable values and -0.9 to 0.9 for data with 
negative variables values, respectively, was used. Normalization 
in this way allows data to be extrapolated, that is, to go beyond 
the range of observed values, e.g., greater than the observed 
values of the wind speed or sea state.

To build the ANN models, we used the MATLAB software 
package and carried out many actions required by the ANN 
techniques and namely:

− �division of the data set into three sets (training, testing, 
and validation),

− �determination of the ANN model architecture (choosing 
the number of hidden layers and epochs of network 
learning),

− �assessment of the ANN model quality (using MATLAB 
regression plots that displayed the network outputs with 
respect to targets for training, validation, and testing sets).

Following the suggestions presented in [32], two networks 
were created for output variables, that is, for the hourly fuel 
consumption rate and instantaneous ship speed over the 
ground respectively. In both cases Multilayer Perceptron (MLP) 
networks were implemented with the following structures:

− eight neurons in the input layer, representing the input 
variables for both ANN models,

− two hidden layers with different numbers of neurons, and
− one neuron in the output layer representing the output 

variables separately for each of the ANN models.
These two networks differ only in the number of neurons 

in their hidden layers.

The quality of the received networks was proved using 
MATLAB regression plots. In both cases, the quality of fit is 
reasonably good for all datasets, with R2 values above 0.95. More 
detailed information regarding the application of artificial 
neural networks for modeling ship speed and fuel consumption 
can be found in [31]. Examples of the relationships between 
the output variables and input variables of the received ANN 
functions for both the entire range of decision-making variable 
values and the selected meteorological sea conditions presented 
in Table 1 are shown in Fig. 1 and 2.

The conducted analysis of the modeling results for both 
ANN models of the MLP type allowed us to assert that:

− �although the data obtained from sea trials have 
inherently discrete values, they let us set up the neural 
networks result in continuous functions,

− �the networks built are well matched to the real data, as 
evidenced by the relatively high correlation coefficients 
and the lack of so-called ‘sigmoid-cliffs’ [33],

− �there are some problems in matching with the sea trial 
observations, especially in areas where relatively few 
data have been collected or a lack of them is observed.

Information regarding the constructed ANN functions is 
saved as a matrix and stored in the computer memory as a set 
of a weight factor matrix assigned to all neuron inputs, from 
which the obtained networks consist of information about the 
structure of the connections between neurons in each layer. 
The size of such a matrix is very large.

Taking into account the above statements, we have decided 
to apply the ANN functions developed to build a module of 
two-criteria optimization allowing for the management of both 
the ship fuel consumption and the navigation time through 
selecting the commanded outputs.

The module of the commanded output selection
As was mentioned earlier, to support a selection of the 

commanded outputs of the ship’s propulsion system, we 
have developed a decision support system in the form of 

Fig. 1. Relationships between the decision-making variable X1 ‘rotational speed 
of the engine’ and the normalized output variables: a) Y1 ‘normalized 

hourly fuel consumption rate’; b) Y2‘normalized instantaneous speed over 
the ground’ (for values of the observed variables presented in Table 1)

Fig. 2. Relationships between the decision-making variable X2 ‘pitch of the propeller’ 
and the normalized output variables: a) Y1 ‘normalized hourly fuel 

consumption rate’; b) Y2 ‘normalized instantaneous speed over the ground’ 
(for values of the observed variables presented in Table 1)
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a computer-aided system. The developed system allowed the 
selection of the decision-making variables (the commanded 
outputs) that should ensure that the ship reaches the required 
destination with reasonable fuel consumption. Moreover, we 
assumed that the most appropriate way to build such a system is 
through the use of two-objective optimization methods based 
on ANN functions. Thus, the developed ANN functions were 
used as criterion functions in the considered module of the 
commanded output selection.

The general idea of the module of the commanded output 
selection is presented in Fig. 3 in the form of a ‘black box’. In 
it, three inputs interact with the process of commanded output 
selection and produce two outputs.

Fig. 3. Module of the commanded output selection in the form of a ‘black box’ 
(x – a vector of the input observed variables in ANN function development)

Two inputs refer to the received ANN functions Y1=f(x) 
and Y2=f(x) respectively, whereas the third input is a set of 
weight factors wqi of the optimization function. On the other 
hand, two outputs specify values of the commanded output 
selection, i.e. the desirable values of the ship engine rotational 
speed X1 and CPP pitch X2.

To build the commanded output selection module, we 
have developed the mathematical optimization model of the 
considered two-objective optimization problem. In general, 
it consists of an objective function and a set of constraints in 
the form of a system of equations or inequalities.

The objective function of two-objective optimization
As was mentioned, both the developed ANN functions 

Y1=f(x) and Y2=f(x) will be used as criterion functions in the 
two-objective optimization. The values of the first criterion 
should be as small as possible. This is connected with fuel 
consumption, whereas the values of the second criterion should 
be as large as possible because it is related to wasted navigation 
time. Therefore, the Weighted Sum Method was used as the 
substitute objective function Z in the proposed two-objective 
optimization. This method minimizes a positively weighted 
convex sum of both the selected criterion functions. The 
essence of this substitute objective function Zsof is to assign 
appropriate weights wqi to both criteria Y1 and Y2, then adding 
the products of the weights and criteria values:

Zsof = wq1 ∙ YN1 + (1 – wq1) ∙ YN2 → MIN    (1)

0 ≤ wqi ≤ 1              (2)

wq1 + wq2 = 1              (3)

where:
Zsof	 ‒ �the substitute objective function of a two-objective 

optimization problem,
Y1	 ‒ �the normalized hourly fuel consumption rate,
Y2	 ‒ �the normalized instantaneous speed over the 

ground,
wq1	 ‒ �the weight factor of criterion 1,
wq2	 ‒ �the weight factor of criterion 2.

The accepted form of this function is in accordance 
with the logic of managing the ship fuel consumption and 
navigation time to reach the required destination, and it is 
intuitively understandable and decision-maker-friendly for 
ship operators. Moreover, the adoption of this approach is 
recommended in many publications dealing with issues of 
multi-criteria optimization, for example in [34], [35].

When the Weighted Sum Method is used, the calculation 
is performed by gradually changing the values of the weights, 
which leads to a better understanding of the relationship 
between the selected criteria.

In the considered module of the commanded output 
selection, the ANN functions were used as criterion functions. 
Unfortunately, the graphic charts of both the selected criterion 
functions have consistent slopes (Fig. 1 and 2). Therefore, the 
substitute objective function Zsof (Eq. 1) was modified by 
introducing a new output variable Ylss representing the loss 
of ship speed:

Ylss = Y2max – Y2obs            (4)

where: 
Ylss	 – �the output variable expressing the loss of ship speed, 
Y2max	 – �the maximal instantaneous ship speed over the 

ground read from the measuring device, 
Y2obs	 – �the instantaneous speed over the ground read from 

the measuring device.

As already mentioned, the normalization and 
standardization techniques were applied to rescale the input 
and output variables prior to training the neural network 
models. In particular, a linear normalization was used across 
the range from 0 to 1 for positive values of the variables Y2, 
which means that Y2max= 1 and

YNlss = 1 – Y2              (5)

where:
YNlss	 – �the normalized output variable expressing the loss 

of ship speed,
Y2	 – �the normalized variable Y2obs.

In this case, the normalized criterion function YNlss 
(representing the loss of speed by the ship) has a slope opposite 
to the normalized criterion function Y1 characterizing the fuel 
consumption (Fig. 4).
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After performing the appropriate substitutions and 
transformations, the substitute objective function Z takes 
the following form:

Zsof = 1 + wq1(YN1 – 1) + (wq1 – 1)YN2 → MIN    (6)

This is a convex function where the minimum occurs 
(Fig. 4). This is a purely technical approach that facilitates 
graphical analysis of the optimization results and does not 
change the results of the optimization in any way.

Set of acceptable solutions
One of the important stages in the development of the 

optimization model is the determination of a set of acceptable 
solutions. In the general case, this set imposes inequality and 
equality constraints on possible solutions. In the considered 
module of the commanded output selection, the set of 
acceptable solutions includes constraints imposed on:

− �decision-making variables,
− �permissible operating ranges of the ship’s propulsion 

system. In the first case, the operating ranges of the ship 
engine rotational speed and the pitch of the CPP set the 
optimization constraints on the values of the decision-
making variables, that is, the commanded outputs. 
These constraints are directly related to the working 
principles of mechanisms controlling the settings of 
the engine rotational speed and the CPP pitch. The ship 
operator controls the rotational speed of the engine 
(and consequently, the shaft speed) and the CPP using 
two command levers situated on the navigation bridge 
(Fig. 5a). These levers remotely control the engine injector 
pumps and the angles of the CPP blades. An example of 
the blade angle is shown in Fig. 5b.

The decision-making variable X1 ‘rotational speed of the 
engine’ is controlled remotely by the first lever, which changes 
the positions of the control rod of the engine inline injector. 
The command values are read as indications n of the rpm 
indicator (with 50 rpm accuracy) as standard equipment of 
the propulsion engine system. The allowable ranges for these 
values set the first inequality optimization constraint:

1000 ≤ n ≤ 1800 [rpm]        (7)

The decision-making variable X2 ‘pitch of the CPP’ is 
controlled by the second lever, which remotely changes the 
blade angles of the CPP, employing a mechanism equipped 
with hydrostatic transmission. The position of the lever clearly 
determines these angles with respect to the propeller hub. The 
command values are read as indications of the lever position 
with respect to the disc engraved scale H marked from −25 to 
+25 (negative values mean vessel motion backwards). However, 
for operational reasons the allowable ranges for these values 
set by the second inequality optimization constraint are:

2 ≤ H ≤ 18 [pitch scale]        (8)

Fig. 4. Relationships between the normalized output variables Y2 , YNlss , Zsof 
and: a) the decision-making variable X1 ‘rotational speed of the engine’; 

b) the decision-making variable X2 ‘pitch of the propeller’ (for values 
of the observed variables presented in Table 1)

Fig. 5. Mechanisms controlling settings of the engine rotational speed and CPP pitch: a) command levers; b) example of the CPP blade angle
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This minimal ship speed plays an important role in avoiding 
possible damage resulting from collisions, contact with berths 
or other ships.

Two-criteria optimization algorithm
The two-criteria optimization algorithm procedure (Fig. 7) 

was created based on the mathematical optimization model 
developed, including both the objective function and the set 
of acceptable solutions.

To determine the optimum values of the output commands, 
the complete search method was used. This method was 
selected because of the small number of possible combinations 
of commanded outputs, that is, combinations of the decision-
making variables X1 ‘rotational speed of the engine’ and X2 ‘pitch 
of the CPP’ respectively. This resulted in 289 combinations 
of possible settings of the commanded outputs. For each 
combination, the minimal values of the objective function 
were calculated.

To prevent the selection of an unacceptable solution, we 
applied a special technical approach based on significant 
enlarging of the value of the substitute objective function Z. 
In such case, this value Z was multiplied by a rate called the 
‘penalty factor’.

Fig. 7. Algorithm procedure of two-objective optimization

Nevertheless, there is no direct relation between the position 
of the command lever and the engine rotational speed. This is 
due to the fact that setting the rotational speed may correspond 
to different positions of the control rod of the inline injector 
pumps depending on the current load. The current load, in 
turn, depends on the orientation of the CPP blades to the 
propeller hub. Therefore, to control the current load of the 
ship engine, we introduce the shaft torque M as the next 
optimization constraint.

In general, the operating range of the engine is determined 
as follows:

Mmin ≤ m ≤ Mmax          (9)
where: 
M	 – �the current value of the torque on the ship’s 

propulsion shaft, 
Mmin	 – �the minimal permissible value on the ship’s 

propulsion shaft, 
Mmax	 – �the maximum permissible torque value on the ship’s 

propulsion shaft.

The minimum permissible torque Mmin is determined by 
the minimum torque required to overcome resistance in the 
engine, gear, shaft bearings and CPP with the zero pitch angle.

As a rule, the maximum permissible torque is determined 
based on characteristics called the engine operating ranges. 
Unfortunately, we do not have any access to such characteristics. 
Therefore, the torque values were read from strain gauges 
mounted on the ship’s propeller shaft by wireless transfer of 
the signal [26].

To determine the relationships between the torque M and the 
command outputs, separate functions were built using ANN 
techniques. To develop these functions, the same approach 
and observations were used as those used to develop the ANN 
functions (Fig. 6).

Fig. 6. The relationships between shaft torque M and: a) ‘rotational speed 
of the engine’; b) ‘pitch of the CPP’ (for values of the observed variables 

presented in Table 1)

The minimum maneuvering speed of the ship vmin was 
selected as the additional constraint. Based on years of ship 
operator experience, we have taken into account the following 
inequality as the optimization constraint:

vmin ≤ 2 knots          (10)
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Optimization calculations were performed using standard 
mathematical functions and mathematical operations on 
matrices of the MATLAB package.

Results and discussion

To validate the correctness of the form of the substitute 
objective function Zsof (Eq. 6), it was investigated before basic 
optimization calculations. An example of such an investigation 
is presented in Fig. 8 as the 3D plot where this function is 
mapped by the surface in a tradeoff curve form. The calculation 
was performed for the weight factors wq1 = wq2 = 0.5 for the entire 
ranges of the decision-making variables X1 and X2, taking into 
account the selected meteorological sea conditions presented 
in Table 1. The function obtained has a long, narrow, and 
bent shaped flat valley, where the minimum of the substitute 
objective function Z occurs. For other meteorological data, 
similar 3D plots were obtained that confirmed that the 
substitute objective function was chosen correctly.

Fig. 8. Three-dimensional visualization of relationships between the substitute 
objective function Z and both the decision-making variables X1 ‘rotational 

speed of the engine’ and X2 ‘pitch of the propeller’: a) wq1 = 0.35; b) wq1 = 0.65 
(for values of the observed variables presented in Table 1)

In our research, we performed calculations to carry out 
the analysis of the substitute objective function values for 
weight factors wqi changing from 0 to 1 with a step of 0.1 for 
the various meteorological conditions and the entire range 
of decision variables X1 and X2 based on the developed two-
criteria optimization algorithm procedure (Fig. 7).

Some examples of the results obtained by the optimization 
calculations are presented in Fig. 9 in the form of 2D graphs. 
All calculations were performed for selected weight factor 
values wq1 = 0.2, 0.4, 0.6, and 0.8 and selected meteorological 
and hull conditions presented in Table 1. The curves shown in 
the 2D graphs have marked points demonstrating the minima 
of the substitute objective function Zsof .

In some cases, these points lie at the graph edges due to the 
constraint (Eq. 7) imposed on the decision-making variable 
X1, which limits the allowable ranges of the ship engine speed. 
For example, in cases of the decision-making variable value 
of a pitch of the CPP:

− �X2 equals 2, the allowable maximum engine speed moved 
the substitute objective function minimum to the graph 
left edge (Fig. 8b),

− �X2 equals 14, the allowable minimum engine speed moved 

the substitute objective function minimum to the graph 
right edge (Fig. 8c).

Fig. 9. The substitute objective function Z for values of the observed variables 
presented in Table 1 for the whole ranges of decision-making variables: 

rotational speed of the engine X1 and pitch of CPP X2 in relation to the weight 
factors: a) wq1 = 0.2/0.8; b) wq1 = 0.4/0.6; c) wq1 = 0.6/0.4 and, d) wq1 = 0.8/0.2.

Table 2 presents the estimated values of the output variables 
Y1 (hourly fuel consumption rate) and Y2 (instantaneous speed 
over the ground), together with the estimated value of the 
torque on the ship’s propulsion shaft. These were calculated 
based on the developed algorithm procedure of two-criteria 
optimization presented in Fig. 7:

− �for the optimal values of the command outputs (rotational 
speed of the engine and pitch of the CPP),

− �for the weight factors wqi from 0 to 1 with a step of 0.1, and
− �taking into account the selected meteorological conditions 

presented in Table 1.

Based on the optimization simulations and analysis of the 
obtained results carried out, we can state that the developed 
two-criteria optimization model strongly supports the selection 
of the commanded outputs of the considered ship’s propulsion 
system. The minimum values of the substitute optimization 
function Zsof (Eq. 6) occur for most of the range of decision-
making variables (commanded outputs). However, in the case 
of selection of the border values of the weight factor close to 0 
or 1, the minimum values of this function are moved to the left 
or right periphery of its parts due to the imposed constraints.

It is clear that with a weight factor of 0 or 1, the considered 
two-criteria optimization problem comes down to the issue of 
single-criterion optimization. Then the minimum hourly fuel 
consumption rate or maximum ship speed over the ground 
should be sought.
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In addition, for the given meteorological conditions 
and adjacent values of the weight factors, the two-criteria 
optimization model provides different combinations of the 
optimal values for the commanded outputs. Moreover, the 
estimated values of the output variables Y1obs (hourly fuel 
consumption rate) and Y2obs (instantaneous speed over the 
ground) are close to each other. This allows the introduction 
of additional optimization criteria, e.g. harmful pollutants 
contained in the exhaust gases emitted from the ship engine 
(NOx, CO2, ppm, etc.).

CONCLUSIONS AND FINAL REMARKS

Based on the results obtained, we can conclude that the 
developed model of two-objective optimization supporting 
a selection of commanded outputs for a ship’s propulsion 
system:

− �allowed us to develop an expert system that, in turn, 
supports a setting of the commanded outputs that ensures 
the set time to reach the required destination with rational 
fuel consumption,

− �has minimum values of its substitute objective function 
for the vast majority of the range of decision-making 
variables, which makes it very useful for optimal selection 
of both the pitch and rotational speed of the CPP.

Moreover, the developed decision-making system:
− �allows the selection of the commanded outputs in the 

dialogue between the decision-maker and the computer, 
where the decision-maker takes the appropriate decisions, 
and the computer processes the collected data and makes 

available a proposal for the selection of the commanded 
outputs,

− �ensures cooperation with other systems used in the ship 
operation to receive the actual data,

− �provides the possibility of continuously updating the 
parameters of the decision-making system resulting from 
the acquisition of the new data.

The developed methodology can also be applied to other 
types of vessels with a  similar design solution to their 
propulsion systems. Developing such a system requires an 
experiment to be performed in the form of sea trials for the 
acquisition of new data specific to the tested vessel.

During the study, it was noted that, for some meteorological 
and operational conditions and adjacent values of the weight 
factors, the developed system provides various combinations of 
optimal commanded outputs and for which the projected values 
of the output variables (ship speed and fuel consumption) are 
close enough. Therefore, there is an opportunity to introduce 
additional optimization criteria, e.g. emissions of harmful 
pollutants (NOx, CO2, pollutant concentration) from the ship 
engine. This issue sets the direction for further research.

The research findings were also used in practice. Since the 
ship’s operator did not allow the use of the installed measuring 
apparatus (torque meter, fuel consumption meter) outside the 
prescribed sea trial period, it was dismantled. Therefore, it 
was not possible to continue operating the computer system 
to select the proper parameters of the ship’s propulsion system 
during navigation to the present date. To use the research 
findings, a special assisting table was drawn up for the ship 
operators. This table contained the ranges of the typical 
observed variable values and the corresponding commanded 
outputs, ensuring optimal values of both the ship speed and 
the fuel consumption values.

In the opinion of the shipowner of the tested ship, 
a noticeable reduction in fuel consumption was observed. 
Of course, this is only a qualitative opinion and cannot be 
considered as a reliable scientific confirmation of the results 
of the research findings.
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