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Abstract

The vibration signals on marine blowers are non-linear and non-stationary. In addition, the equipment in marine 
engine room is numerous and affects each other, which makes it difficult to extract fault features of vibration signals 
in the time domain. This paper proposes a fault diagnosis method based on the combination of Ensemble Empirical 
Mode Decomposition (EEMD), an Autoregressive model (AR model) and the correlation coefficient method. Firstly, 
a series of Intrinsic Mode Function (IMF) components were obtained after the vibration signal was decomposed by 
EEMD. Secondly, effective IMF components were selected by the correlation coefficient method. AR models were 
established and the power spectrum was analysed. It was verified that blower failure can be accurately diagnosed. 
In addition, an intelligent diagnosis method was proposed based on the combination of EEMD energy and a Back 
Propagation Neural Network (BPNN), with a correlation coefficient method to get effective IMF components, and the 
energy components were calculated, normalised as a feature vector. Finally, the feature vector was sent to the BPNN 
for training and state recognition. The results indicated that the EEMD-BPNN intelligent fault diagnosis method is 
suitable for higly accurate fault diagnosis of marine blowers.
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introduction

As an important equipment in the marine engine room, 
the blower is responsible for transporting air required by the 
entire ship and ensuring the normal operation of the ship.  
Inadequate machinery maintenance will increase equipment 
failure, posing a threat to the ocean environment, affecting 
performance, having a great impact in terms of business 
losses by reducing ship availability, increasing downtime 
and moreover increasing the potential for major accidents 
occurring and endangering lives on board [1]. In the past, 
this work was accomplished through condition-based and 
time-based maintenance, which depends heavily on human 
cognition and experience [2,3]. It is difficult to meet the 

development needs of large-scale, intelligent and unmanned 
ships. Especially, subsystems in marine machinery are coupled 
with each other, and a minor fault may bring a chain effect 
to related subsystems, thus amplifying the damage caused 
by the fault [4]. Consequently, it is necessary to diagnose 
blower faults and carry out condition-based maintenance. The 
maintenance measures have important practical significance 
– they ensure the safe operation of mechanical equipment 
and reduce the rate of occurrence of significant accidents [5].

The traditional fault diagnosis method includes over-
current detection and over-voltage detection. There are 
also new methods including Short-time Fourier Transform 
(STFT) [7], Wavelet Transform (WT) [8], Empirical Mode 
Decomposition (EMD) [9], and Artificial Neural Networks 
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(ANN) [10]. The classical Fast Fourier Transform (FFT) can 
only reflect the overall characteristics of a vibration signal. 
The short-time Fourier transform obtains the relationship 
between time and frequency by adding a narrow window 
function, but it still cannot meet the requirements of high 
frequency resolution in the low-frequency region and high 
time resolution in the high-frequency region. Non-intrusive 
vibration measurement is used for effective identification 
of journal bearing operation in rotating machinery [11,12], 
but the vibration signal is a nonlinear and non-stationary 
signal, which is not suitable for analysis with the Fourier 
transform. Although WT and EMD are effective in processing 
nonlinear and non-stationary signals, they also have some 
problems. For example, in the wavelet transform method, 
the suitable wavelet bases should be pre-set, meaning that it 
lacks self-adaptability. On the other hand, empirical mode 
decomposition is a type of adaptive time–frequency analysis 
algorithm [13]; Ensemble Empirical Mode Decomposition 
(EEMD) [14] can overcome the modal aliasing effect of EMD 
effectively [15]. However, EEMD still has two issues that need 
to be addressed. First is how to pick out the IMF(s) which 
contains sufficient fault feature information. Second, in the 
case of strong background noise and for early failure, EEMD is 
not ideal to extract the fault feature [15]. The AR model is the 
most basic and most widely used mathematical model in time 
series analysis. It condenses the characteristics and working 
status of the system. It can not only diagnose faults, but also 
predict potential faults early. Table 1 shows the advantages 
and disadvantages of several typical fault feature extraction 
methods for fault diagnosis.

Method Advantages Disadvantages

FFT It can reflect the overall characteristics of the signal (time 
domain or frequency domain)

1. Not suitable for non-stationary and non-linear signals
2. Inability to reflect the relationship between time and frequency

STFT No cross-terms interference and overlaps [16] Poor time–frequency resolution [17]

WT
1. Time-frequency windows with different sizes at different 

times and frequencies
2. Suitable for non-stationary and non-linear signals

Limited by Heisenberg’s uncertainty principle

EMD [18]
1. The signal analysis turns out to be adaptive
2. Suitable for non-stationary and non-linear signals

1. Mode mixing problem
2. Boundary effect
3. Lacks support of mathematical theory

EEMD
It can effectively suppress mode mixing 1. It is difficult to pick out effective IMF(s)

2. In the case of strong background noise and early failure, EEMD is 
not ideal to extract the fault feature [15]

Schoen et al. used Fast Fourier Transform (FFT) to extract 
the most pertinent information for motor fault diagnosis, and 
the results show that they can accurately extract fault features 
[19]. Wang et al. proposed a novel intelligent fault-diagnosis 
method based on generalised composite multiscale weighted 
permutation entropy (GCMWPE), and this method was able to 
correctly diagnose bearing faults [13]. Khelil et al. used ANN 
to monitor engine health and diagnose faults. Experiments 
indicated that the fault can be detected instantaneously at 
its early stage [20]. Jia et al. combined integrated EEMD and 
grey theory to remove noise in the vibration signal, and the 
denoising effect was better than wavelet denoising and other 
methods, but the time required was longer, which limits its 
application [21].

Several classifiers have been used in the fault diagnosis 
of marine equipment, such as expert systems [22], Artificial 
Neural Networks [10], and Support Vector Machines 
(SVM) [23]. Although SVM can handle small samples and 
nonlinear and non-stationary data very well, the SVM 
classifier performance is greatly affected by selecting the 
penalty parameter (c) and kernel parameter (g). Incorrect 
selection will directly affect the diagnosis accuracy and its 
generalisation ability [11]. In recent years, BPNN has been 
comprehensively exploited in intelligent fault diagnosis 
because of its predominant self-adaptation and input‒
output nonlinear mapping [24]. It is necessary to find a novel 
intelligent method for fault diagnosis in marine blowers.

Tab. 1. Comparative classic studies of fault feature extraction methods
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RELATED FAULT DIAGNOSIS METHODS

EEMD

EEMD mainly reduces modal aliasing by adding several 
sets of white noise to the signal x(t). The EEMD process is 
briefly explained below:
1)� Add different white noise sequences nj(t)(j=1,2,3,...,M) to 

the signal x(t).

x�(t) =  x(t) +  n�(t)  (1)

where xj(t) represents the signal after adding white noise for 
the j-th time; j represents the number of times white noise 
is added.
2)	EMD decomposition is performed for each group xj(t), and 

I intrinsic mode function (IMF) components are obtained 
for each group, which are recorded as Ci,j(t)(i=1,2,3,...,I; 
j=1,2,3,...,M), where Ci,j(t) represents the i-th IMF obtained 
by EMD decomposition after adding white noise amplitude 
for the j-th time.

3) If j<M, let j=j+1 and repeat process 2;
4) The above IMFs are calculated by the overall average, and 

the final IMF is

C�(t) =
1
M � C�,�(t)    

�

���
(2)

where Ci(t) represents the i IMFs obtained by EEMD, and M 
represents the number of averages.
5) The original signal is

x(t) =  C�(t) + Res   (3)

where Res is the residual component of EEMD.AR MODEL
The power spectrum estimation based on AR model 

parameter modelling can effectively improve the frequency 
resolution. Due to its extension, it can effectively analyse 
short-sample signals, overcome the windowing effect of 
Hilbert’s separation algorithm, and the resulting spectrum 
is smoother and different. The spectrum in this case is easier 
to distinguish. The basic idea of AR spectrum estimation is: 
first to establish an AR model for the time-series signal, and 
then to use the model coefficients to calculate the signal’s 
self-power spectrum. The general expression of the AR(N) 
model is

y(n) = B(n) −�a�y(n − k)
�

���

 

(4)

where y(n) is the autoregressive time series; B(n) is the finite 
bandwidth white noise with a normal distribution with zero 
mean and variance σ2; N is the order of the model.

CORRELATION COEFFICIENT METHOD

EEMD can decompose a time-domain signal into a series 
of IMF components and a residual component from high to 
low frequencies [25]. The actual collected vibration signal 
contains some noise, the existence of which affects the 
accuracy of signal analysis. Using only EEMD to decompose 
the signal cannot remove the noise. Singh et al. calculated 
the correlation coefficient between each IMF and the original 
signal, and selected the most correlated IMF components 
for recombination, so as to achieve the purpose of removing 
the noise in the signal [26]. The calculation formula of the 
correlation coefficient between signal A and B is as follows:

P(t) = ���(�,�)
��(�)��(�)

   (5)

where P(t) is the correlation coefficient, COV(A,B) is the 
covariance of signal A and signal B, and �D(A) and �D(B)  and �D(A) and �D(B)  
are the variance.

The larger the P(t), the higher the correlation between A 
and B. According to the value of the correlation coefficient, 
the interference component in the signal can be removed.

ENERGY PRINCIPLE

After a fault of the marine blower occurs, the energy 
contained in its vibration signal will also change. According 
to the different energy distribution under different working 
conditions, the fault type can be identified [27]. After the 
vibration signals under different working conditions are 
decomposed by EEMD, the energy of each IMF is different, 
which can be used as a fault feature. 

EXPERIMENT AND ANALYSIS

EXPERIMENTAL SETUP

A test bench is used to simulate some typical blower faults in 
the laboratory. The experimental system is mainly composed 
of the blower test bench, vibration sensor, photoelectric speed 
tester, National Instruments(NI) data acquisition module 
and computer. 

Three kinds of motor faults were simulated: an inter-rotor 
short circuit (the U-phase short circuit ratio is 18.6%), a rotor 
bar breaking fault and a bearing abrasion fault; There were 
four kinds of faults: unbalanced blades, blocked air outlets, 
loose motor bolts, and combined faults with loose bolts and 
unbalanced blades, as shown in Fig. 1. The short circuit is the 
most serious failure of the blower, whereas bearing wear is not 
serious, but will increase the power loss [28]. The vibration 
sensor was installed above the end cover of the motor output 
bearing as shown in Fig. 2. The rotating speed of the blower 
was measured by a hand-held speed detector irradiating the 
reflective strip pasted on the blower, as shown in Fig. 1. The 
sampling frequency was 2048 Hz and the sampling time length 
was 2s. The main parameters of the blower are shown in Table 2.
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Fig. 1. Blower imbalance fault setting Fig. 2. Blower test bench

Tab. 2.The main parameters of the blower

Rated power 1.1 kW Rated speed 1430 r/min

Capacity 1500~2200 m3/h Power factor 0.89

Motor type Three-phase cage 
asynchronous motor Rated current 4.6 A

EXPERIMENTAL RESULTS

EEMD is used to decompose the vibration signals. The 
standard deviation of auxiliary white noise is 0.3 times that of 
the original signal, and the number of white noise integration 
m is 100. Taking the normal condition vibration signal of the 
motor as an example, 16 IMF components and one residual 
component are obtained after EEMD decomposition, as 
shown in Fig. 3.

Fig. 3. EEMD decomposition of motor vibration signal under normal condition

As described above, the correlation coefficients between all 
IMFs and the original signal are calculated, and the results 
are shown in Table 3.

Tab. 3. Correlation coefficients of each IMF and the original signal under 
normal conditions

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8

0.5838 0.2929 0.7493 0.5013 0.0973 0.0692 0.5013 0.0974

IMF9 IMF10 IMF11 IMF12 IMF13 IMF14 IMF15 IMF16

0.0838 0.1003 0.0383 0.0117 0.0025 0.0010  0.0004 0.0005

It can be seen from Table 3 that IMF1~IMF4 and IMF7 
have relatively large correlation coefficients with the original 
signal, which can be considered as the effective component 
of the signal. These five IMFs components are selected for 
reconstruction to achieve signal noise reduction.
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FFT ANALYSIS

After the noise reduction of the vibration signals, the 
traditional FFT analysis method is used to analyse them, 
taking the normal condition and short-circuit fault of the 
motor as an example. When the motor has a short-circuited 
fault, the grid frequency is 50 Hz, the measured speed is 1458 
r/min, and the slip rate s is 0.028. The FFT analysis results 
under normal and short-circuit faults are shown in Fig. 4.

As can be seen from the spectrum diagram in Fig. 4, the 
amplitude of the spectrum with a motor short-circuit fault 
at 50 Hz is larger than that with the normal condition, but 
there is almost no difference at 75 Hz, where it is difficult 
to distinguish. In both cases, the amplitude reaches the 
maximum at 100 Hz, and the amplitude of the motor short-
circuit fault is much larger than the normal condition. The 
motor is a 4-pole asynchronous motor, so the amplitude 
reaches the maximum at four times the rotation frequency. 
Due to the stator short-circuit fault of the motor, the short-
circuit phase current increases, which destroys the magnetic 
field balance and causes imbalance of the electromagnetic 
force. The final amplitude is larger than the normal 
condition at twice and four times the frequency, and the 
fault characteristics are obvious. Therefore, the motor short-
circuit fault can be diagnosed by FFT. By analysing other 
blower faults, the results show that this method can also 
distinguish them effectively.

FAULT DIAGNOSIS

MOTOR FAULT DIAGNOSIS BASED ON EEMD-AR 
SPECTRUM

The AR model is mainly used for stationary processes, 
while EEMD decomposes complex nonlinear non-stationary 
signals into a number of single-component signals with zero 

mean and which are locally symmetrical with respect to the 
time axis, which is equivalent to linearising and smoothing 
the original signal. Therefore, a diagnostic method combining 
EEMD and the AR spectrum is proposed, which can combine 
the advantages of both. That is, the signal is first decomposed 
by EEMD, and then the correlation between each IMF 
component and the original signal is calculated, and the 
IMF with the largest correlation coefficient is selected to 
establish the AR model.

c�(t) + � φ��

�

���

c�(t − k) = e�(t) (5)

where ci(t) is the IMF component that satisfies the condition; 
φik is the model parameter of the AR model; ei(t) is the residual 
of the AR model; m is the model order of the AR model. The 
diagnosis process based on the EEMD spectrum is shown 
in Fig. 5.

Fig. 4. FFT Analysis of motor in normal condition and stator short circuit
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Start

 Input original data x(t)

Use EEMD for decomposition

Calculate the correlation coefficient 
of each IMF and x(t)

Select the IMF with the largest correlation 
coefficient

AR spectrum analysis

End

Fig. 5. Diagnosis process based on EEMD spectrum

The four working conditions of the motor are analysed 
according to this method. For each work situation, we select 
the 4 largest correlation coefficients to establish an AR model, 
then calculate the power spectrum. The EEMD-AR spectrum 
obtained is shown in Fig. 6.

Fig. 6. EEMD-AR spectrum in four conditions

It can be seen from the AR spectrum of the IMF1 
component in Fig. 6 that in the frequency band of 0‒550 Hz, 
the energy of the motor in the normal condition, with a short-
circuit fault and a broken bar fault decreases slowly and has 
little difference, while the amplitude of the bearing wear fault 
first increases and then decreases, and reaches the maximum 
value at the frequency of 400 Hz. The motor bearing wear 
fault can be clearly identified in this frequency band. In other 
frequency bands it is difficult to distinguish between the four 
conditions. In the AR spectrum of the IMF2 component, the 

energy of the four conditions increases slowly in the analysed 
frequency band without intersection. Therefore, the four states 
can be accurately judged by analysing the energy of the IMF2 
component. In the AR spectrum of the IMF3 component, the 
energy of the normal state and short-circuit fault are almost 
the same in the whole analysed frequency band, which makes 
it difficult to judge the two states. Although the energy of the 
motor bearing wear and broken bar fault increases slowly 
in this frequency band and has no intersection, the energy 
is similar and the diagnosis effect is not ideal. In the AR 
spectrum of the IMF4 component, in the frequency band of 
0‒300 Hz, the energy of the short-circuit fault and broken bar 
fault increases slowly but gets closer and closer, but the two 
states can still be distinguished. The energy of the other two 
states is too close to distinguish. Other frequency bands have 
serious waveform overlap, so it is impossible to distinguish 
the working conditions of the motor.

Based on the analysis above, the AR spectrum of the 
IMF1 ~ IMF4 components can be used to identify four 
motor conditions, among which the AR spectrum of the 
IMF1 component has the best effect on identifying bearing 
wear fault, but only this fault can be identified; the IMF2 
component can identify four states, and the effect is the best; 
the AR spectrum of the IMF3 component makes it difficult to 
identify the fault; the AR spectrum of the IMF4 component 
can only identify two faults in the inherent frequency band, 
which is limited in diagnosis.

FAULT DIAGNOSIS BASED ON BPNN

Back Propagation Neural Network
BPNN has been comprehensively exploited in intelligent 

fault diagnosis because of its predominant self-adaptation and 
input‒output nonlinear mapping. BPNN usually consists of 
an input layer, several hidden layers and an output layer [29].

The sample enters from the input layer and passes through 
the network structure layer by layer to the output layer. If 
the output value and the expected value are within the error 
range, it ends. Otherwise, the error between the actual value 
and the expected value is adjusted layer by layer in reverse and 
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each layer’s weight is repeatedly modified until convergence 
[30]. The basic structure of the BPNN is shown in Fig. 7.

Fig. 7. The basic structure of the BPNN

Fault feature extraction
The IMF component contains the current operating status 

information of the blower, and the energy of the four IMF 
components with correlation coefficients ranging from large 
to small and greater than 0.2 is selected as the fault feature, 
and then normalised to constitute a 4-dimensional feature 
matrix as the input of the BPNN. The energy calculation 
steps are as follows:

Step 1: Select effective IMFs components by the correlation 
coefficient method

Step 2: Calculate the energy of each IMF selected

E� = ∑C��
� (t)  (7)

where Cik is the amplitude of discrete points of each IMF 
component.

Fault diagnosis expected output
The blower has eight different working conditions, so the 

output is 8 nodes. The expected values of the different fault 
output nodes are shown in Table 4.

Tab. 4. BPNN expected output

State Expected output

Normal 0000 0001

Broken rotor bar 0000 0010

Stator short circuit 0000 0100

Bearing abrasion 0000 1000

Unbalanced blades 0001 0000

Blocked air outlets 0010 0000

Loose motor base bolts 0100 0000

Coupling faults 1000 0000

BPNN main parameters
The learning rate, the number of hidden layers and the 

number of hidden layer nodes determine the performance 
of the BPNN, but these parameters can only be determined 
by experience or empirical formulae. A large number of 
experiments and formula calculations show that the correct 
rate is the highest when the hidden layer structure is 4 layers 
[31]. The main parameters of the BPNN are shown in Table 5.

Tab. 5. The main parameters of the BPNN

Number of nodes in the input layer 4

Number of nodes in the output layer 8

Number of hidden layer 4

Number of hidden layer nodes 8,16,32,8

Learning rate 0.05

Training function trainlm

Training goals 0.00001

Maximum number of iterations 300

BPNN diagnostic results
We collect 160 groups of data of vibration signals of the 

blower under normal conditions and motor short-circuit, 
broken bar and bearing wear faults; and 120 groups of blade 
imbalance, loose motor base, blower air outlet blockage and 
looseness plus unbalanced coupling fault. Each group has a 
sampling time of 2 seconds, and a total of 1120 groups of data 
are collected. 70% of them are used for training the BPNN and 
30% for testing. The training results are shown in Fig. 8, and 
it can be seen that when the iteration reaches 113 times, the 
value of training error meets the accuracy requirement. The 
diagnostic accuracy of the BPNN is shown in Table 6 where it 
is seen that the comprehensive and accurate recognition rate 
of the test samples using the BPNN reached 96.5%. Therefore, 
the combination of the EEMD energy and the correlation 
coefficient method can effectively extract the characteristic 
information of the marine blower, and reliably realise fault 
identification through the BPNN.

Fig. 8. Training results of the EEMD-BPNN
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Tab. 6. Diagnostic accuracy of the BPNN

Type
Number 

of training 
samples

Number of 
test samples

Number of 
misjudgments

Correct 
rate

Normal 110 50 0 100%

Stator short circuit 110 50 4 92%

Broken rotor bar 110 50 2 96%

Bearing abrasion 110 50 1 98%

Unbalanced blades 84 36 0 100%

Blocked air outlets 84 36 3 88.9%

Loose motor base 
bolts 84 36 1 97.2%

Coupling faults 84 36 0 100%

Total 776 344 12 96.5%

CONCLUSIONS

Aiming at the non-linear and non-stationary characteristics 
of the vibration signal of a marine blower, and the problem 
of large engine room vibration and noise interference, this 
research proposes a fault diagnosis method based on EEMD, 
the AR model and the correlation coefficient method. This 
method can not only extract the effective components in the 
signal, but also combine the advantages of the EEMD and AR 
models. Through the analysis of the experimental data of the 
blower test bench, the method can accurately identify faults.

The energy contained in the vibration signal of the blower 
under different working conditions is different. This research 
proposes a fault feature extraction method of the marine 
blower based on the EEMD energy and correlation coefficient 
method. The effective components of the vibration signal are 
selected by the correlation coefficient method, and the energy 
of the IMF components of different frequency bands is used to 
construct the feature vector and as input into the established 
BPNN fault recognition model after normalisation. Verified 
by a large number of test samples, the fault identification 
results show that the EEMD-BPNN method can effectively 
extract the fault characteristic information of the marine 
blower, and accurately identify the fault type.

Future work will aim to optimise the BPNN to reduce the 
impact of inherent defects of its own structure, for example, 
by using an adaptive learning rate method to reduce the 
BPNN training time and increase its accuracy. Finally, an 
intelligent fault diagnosis system with higher accuracy for 
marine blowers is designed.
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