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ABSTRACT

Most ship collisions and grounding accidents are due to errors made by watchkeeping personnel (WP) on the bridge. 
International Maritime Organization (IMO) adopts the resolution on the Bridge Navigation Watch Alarm System 
(BNWAS)  detecting operator disability to avert these accidents. The defined system in the resolution is very basic 
and vulnerable to abuse. There is a need for a more advanced system of monitoring the behaviour of WP to mitigate 
watchkeeping errors. In this research, a Bridge Navigation Watch Monitoring System (BNWMS) is suggested to achieve 
this task. Architecture is proposed to train a model for BNWMS. The literature reveals that vision-based sensors can 
produce relevant input data required for model training. 2D body poses belonging to the same person are estimated from 
multiple camera views by using a deep learning-based pose estimation algorithm. Estimated 2D poses are projected into 
3D space with a maximum 8 mm error by utilising multiple view computer vision techniques. Finally, the obtained 3D 
poses are plotted on a bird’s-eye view bridge plan to calculate a heatmap of body motions capturing temporal, as well 
as spatial, information. The results show that motion heatmaps present significant information about the behaviour 
of WP within a defined time interval. This automated motion heatmap generation is a novel approach that provides 
input data for the suggested BNWMS.
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INTRODUCTION

Many studies have shown that maritime accidents are often 
the result of human error. Along with improved ship design 
and technology, there has been noticeable progress on accident 
analysis [1, 2] and risk management [3, 4]. This progress 
contributed to a 50% drop in reported shipping losses in 2020, 
compared to 2011 [5]. Besides this, maritime accidents have 
declined globally since 2013 [6]. However, the numbers are still 
large enough to threaten marine ecosystems, the environment 
and local economies when considering the catastrophic 
consequences of such incidents [7]. In particular, collisions 
and groundings have the potential to cause catastrophic results. 
Analyses of collisions and groundings show that 96.5% of 

errors occur on the bridge, where the main actor involved has 
been the officer in charge of the navigation watch (OOW) [8]. 
Thus, proper watchkeeping during ship navigation is of great 
importance, to prevent pollution of the marine environment 
and loss of both life and property.

The master of the ship shall ensure that watchkeeping 
arrangements on the ship are adequate for safe navigation 
[9]. The most important issue in arranging watchkeeping is the 
competence and fitness of OOW and the lookout. OOW should 
understand individual and team roles and responsibilities 
during a navigational watch, and an OOW should be familiar 
with all navigational installations and equipment. The lookout 
must know how to keep a continuous and proper look-out. 
Watchkeeping personnel (WP), both the OOW and the lookout, 

* Corresponding author: gokcekv@itu.edu.tr (V.Gokcek)



POLISH MARITIME RESEARCH, No 1/202264

should not deal with any other duties or actions other than 
their responsibilities related to navigational watch.  

Proper watchkeeping and the responsibilities of WPs are 
well defined in the International Convention on Standards 
of Training, Certification, and Watchkeeping for Seafarers 
(STCW) Chapter VIII – Standards Regarding Watchkeeping 
[9]. There are routines to fulfil those watchkeeping standards, 
such as fixing the ship’s position frequently, maintaining visual 
look-out, checking the track, monitoring the navigational 
hazards, verifying compass input and steering, etc. [10]. 
Deviation from these routines means that the watch is below 
standard and a situation may occur, forming the basis for 
the occurrence of a maritime accident. Poor look-out and 
insufficient use of navigation equipment are among the 
watchkeeping routines that are the root causes of groundings 
and collisions [11]. To prevent such non-conformities, the 
master of the ship controls WPs during navigational watch, 
by randomly visiting and checking them. However, the master 
cannot control all navigation watches during the whole voyage. 
Thus, International Maritime Organization (IMO) adopts the 
Resolution MSC.128(75) Performance Standards for a Bridge 
Navigation Watch Alarm System (BNWAS), to detect operator 
disability which could lead to marine accidents [12]. The system 
monitors the absence of watchkeeping on the bridge and 
automatically alerts the Master or the backup officer or, even, 
all of the crew. However, the defined system in the resolution 
is very basic and vulnerable to abuse.  

BNWAS has a reset mechanism which is a combination 
of push-buttons and motion detectors on the bridge, as well 
as event listeners on the electronic navigation equipment. If 
it is not reset within the manually defined period (between 
3 and 12 minutes), alarm stages start from the bridge to all 
necessary locations. While this approach can detect the absence 
or disability of WP on the bridge, it is not sufficient to evaluate 
whether there is proper watchkeeping. Resetting BNWAS at 
every period does not mean that WPs follow their watchkeeping 
responsibilities based on STCW, it is just proof that there is 
a WP on the bridge, even when the WP is drowsy or affected by 
fatigue. Along with BNWAS, there is a need for a more advanced 
evaluation system to enhance the safety of navigation. 

An artificial intelligence-based automated system that 
continuously monitors the behaviour of WPs improves ship 
navigation safety. This system detects nonconformities and 
gives feedback to improve the behaviour of WPs by monitoring 
their watchkeeping performance. Also, WPs keep a proper 
watch if they know that they are continuously being monitored. 
In this respect, an architecture is proposed to train a model 
for a Bridge Navigation Watch Monitoring System (BNWMS). 
In this architecture, vision-based sensors are suitable for the 
bridge environment to collect training data.  

This study focuses on the automated motion heatmap 
generation of WP during navigation watch. A multi-video 
camera system is established on the actual bridge. Multiple 
cameras are calibrated to enable 3D projection. 2D body poses 
belonging to the same person from multiple camera views are 
estimated by using a deep learning-based pose estimation 
algorithm. The backward projection method, with camera 

parameters, is utilised to construct a 3D body pose from 
estimated 2D poses. An error function is defined to eliminate 
incorrectly calculated 3D body poses, while maximum and 
minimum lengths for body parts are assigned to validate the 
results. A heatmap of body motions is generated by plotting 
validated 3D body poses in the bird’s-eye view (2D) bridge 
plan. This automated motion heatmap generation, presenting 
both temporal and spatial information, is a novel approach that 
enables the training of a deep learning-based model monitoring 
the behaviour of WP during navigation. 

The article is organised as follows. Section 2 gives information 
about the study’s background and related literature. Section 3 
outlines the methodology used in the analysis, while Section 
4 details the results of a case study. Section 5 discusses the 
research findings. The final section remarks on the implications 
and concludes the article. 

BACKGROUND

Although there is no research on the behaviour of seafarers, 
based on machine learning or deep learning techniques, many 
different methods are proposed for the analysis of human 
behaviour, in terms of human activity recognition in many 
areas. Human activity recognition determines body posture, 
movements, and actions using multimodal data from various 
sensors. Previous studies on the recognition of human activities 
can be categorised, broadly based on the sensors used.  These 
categories include vision-based sensors, wearable sensors, 
mobile phone sensors, and social network sensors [13]. Vision-
based sensors produce images that enable the recognition of 
many different activities [14]. Mobile phones, smartwatches, 
and other wearable sensors calculate cardiovascular parameters 
or inertial data to monitor health conditions and sports 
activities [15]. Social network sensors enable an understanding 
of users’ behaviour and interests, if they actively use social 
media sites [16]. 

Both visual and wearable sensors can extract relevant data 
for the behaviour analysis of WP during navigation. While 
examining restricted areas, like a bridge, many types of 
research use vision sensor technologies, such as RGB cameras, 
for event monitoring and recognition, rather than relying on 
wearable sensors [17]. Besides, the use of wearable sensors 
can distract WP, and reduce awareness and performance. 
Thus, the use of image data would be more appropriate for the 
bridge environment. Models have been developed which detect 
and identify emotions [18], gestures [19], mouth and flexion 
movements [20], eye movements [21] skeletal structures [22], 
and physical activities [23], using only image data with a deep 
learning approach. For flexion, eye movement, and emotion 
recognition, the face of the person should be constantly 
monitored with a high-resolution camera. These models are 
mostly trained to assess drivers and pilots. However, WP on the 
bridge does not sit in a fixed position like a driver or pilot but 
walks in a wide area during a watch. Therefore, it is difficult to 
monitor the permanent face of WP on the watch. Besides, the 
area that WPs occupy during a navigation watch is important 
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to understanding watchkeeping behaviour. Thus, constructing 
3D body pose features from vision sensors and plotting them 
onto a 2D bridge plan is an appropriate approach for the bridge 
environment.

The simplified architecture shown in Fig. 1 is proposed 
to train a model for BNWMS on the behaviour analysis of 
seafarers. In this model, the input is the tracked 3D body-
pose features (i.e. xij is the jth pose parameter at the ith frame) 
while the output is the label for the WP’s behaviour in that 
time (i.e. yk is the class label). Classification labels can easily be 
obtained by expert evaluation (for example, an expert can label 
the actions of the WP seen in the video). However, the body 
pose features within a defined time interval constitute a high 
dimensional space. Those features should be converted into 
simpler input data, useful for behaviour analysis. It is assumed 
that knowing the areas that WPs occupy on the bridge is an 
essential input to comprehend what they are doing during 
a navigational watch. Thus, we focus on motion heatmaps of 
the 3D body-poses of WPs. 

Firstly, there should be multiple camera views to extract 3D 
body-pose features. When using multiple cameras to analyse 
the same scene, camera calibration is a necessary step. In 
the context of multiple view geometry in computer vision, 
camera calibration is used to find the camera’s intrinsic and 
extrinsic parameters. While intrinsic parameters refer to 
optical characteristics and internal camera geometry, extrinsic 
parameters are the 3D position and orientation of each camera 
frame relative to a  world coordinate system  [24]. Those 
parameters enable mapping between 3D world coordinates and 
2D image coordinates. There are various camera calibration 
algorithms and they can be classified as linear, nonlinear, and 
multi-step techniques [25, 26]. Multi-step techniques are more 
accurate than linear methods and are faster than nonlinear 
methods. The four-step camera calibration developed by 
Heikkila & Silven [27] and the bias-corrected version of this 
algorithm developed by Heikkila [28], are well-known and 
most-used in the multi-step category. In this study, the latest 
version of Heikkila’s camera calibration is utilised.

Secondly, a 2D pose estimation algorithm is required to 
estimate body parts from each camera. When a body pose 
is detected on at least two camera views, a 3D pose can be 
constructed by using camera parameters. The pose estimation 

algorithm must work in real-time and detect multiple persons 
in the scene. There are top-down and bottom-up approaches to 
detect people and their poses in the image. Top-down methods 
[29, 31] detect people first and then estimate their body parts 
on each detected region; this is followed by calculation of the 
relevant pose of each person. On the contrary, bottom-up 
methods detect all joints first, then associate them to create 
a possible pose for each person [22, 32]. Each method has its 
advantages, however, for this study, fast multi-person pose 
estimation is necessary to assess real-time behaviours of WP 
during a watch. 

Top-down methods apply a  person detector to detect 
people and use single-person pose estimation (SPPE) for each 
detected person. Since those methods need to detect each 
person independently, they show less accuracy in overlapping 
situations. Also, running the SPPE model for every person 
consumes time, depending on the number of detected people. 
On the other hand, bottom-up methods find all joints and 
combine them properly for each possible person in the image. 
They take the most time to pair corresponding joints. However, 
grouping the detected joints is less costly than repeating the 
SPPE for each detected person. Bottom-up methods can extract 
body parts correctly, even if there are overlapped people. The 
performances of the state-of-the-art bottom-up method 
OpenPose [22] and the top-down method HRNet [31] are 
compared. Each model was run on the same 4 hour navigation 
watch. OpenPose is approximately 24 times faster than HRNet, 
while HRNet seems more accurate than OpenPose. Since it 
is not possible to maintain real-time analysis by HRNet, we 
considered using OpenPose despite its slightly lower accuracy. 

The final step is to construct 3D poses and define a plotting 
procedure to generate the motion heatmap of those poses. 
The next section gives more detailed information about the 
methodology.

METHODOLOGY

The research methodology to generate a motion heatmap 
consists of a deep learning-based pose estimation algorithm 
and multiple view computer vision techniques. 2D body poses 
belonging to the same person are estimated by the OpenPose 
algorithm from multiple camera views. The camera parameters 
are estimated by camera calibration, to project 2D body poses 
into 3D space. The constructed 3D body poses are then plotted 
on the 2D bridge plan, to generate a heatmap of body motion. 

OpenPose is the real-time, multi-person 2D pose estimation 
algorithm based on a multi-stage Convolution Neural Network 
(CNN). The first stage of CNN predicts confidence maps of 
body part locations, while the second stage (called part affinity 
fields - PAF) encodes the degree of association between parts. 
The grouping of keypoint instances is carried out by using 
confidence maps and the PAFs together, in order to output 
the 2D keypoints for all people in the image. It predicts 25 
keypoints for each person, as shown in Fig. 4. The detailed 
methodology of OpenPose is presented in [22].

Camera calibration estimates unknown parameters of 

Fig. 1. Architecture for BNWMS
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the camera model. Heikkila’s geometric camera calibration 
model [28], based on the perspective projection, is utilised to 
find unknown camera parameters. Unknown parameters can 
be divided into intrinsic and extrinsic parameters. Extrinsic 
parameters enable the transformation of world coordinates  
(X,  Y,  Z) to camera coordinates (x,  y,  z), while intrinsic 
parameters provide the mapping of camera coordinates to 
pixel coordinates (u, v). This operation is the forward projection 
shown in Fig 2.

In the backward projection, there is a reverse application of 
the forward projection shown in Fig. 3. By using one camera 
output, there are always two equations with three unknowns. 

If the Z dimension in the 3D plane is known, in addition 
to the single-camera image points, the other two world 
coordinates can be calculated. However, since the information 
of the Z dimension is not available, it is not possible to calculate 
the 3D coordinates using the single-camera data. Instead, if the 
pixel coordinates in the same spot are known from a second 
camera, all of the 3D coordinates, along with the Z dimension, 
can be calculated. Since two different sets of pixel data from 

two cameras belong to the same point in the world coordinates, 
a series of equations emerge:

pci =  = IEi  

    (1)
eqn1i = (pci(1:1,:)/ pci(3:3,:) == pci(1:1,:));

eqn2i = (pci(2:2,:)/ pci(3:3,:) == pci(2:2,:));

where I is the intrinsic parameters matrix, Ei is a combination of 
extrinsic parameters of the th camera, pci are the calculated pixel 
points of the ith camera from unknown parameters of  X, Y, Z 
coordinates, and pi is a real observed point of the ith camera. 
The triangulation function transforms pi into X, Y, Z [9]. There 
is an error function to verify the solution and this reprojects 
X, Y, Z into each of the th camera coordinates, to re-calculate 
pixel points (rpci). The comparison between rpci and original pi 
is made over a threshold value. This value is equal to two times 
the camera calibration error because there are two calculation 
processes with calibration parameters including X, Y, Z and rpci. 
The performance of the 3D pose construction depends on the 
difference between rpci and pi. To be acceptable, this difference 
should be smaller than the threshold value.

Since there is always more than one WP on the bridge, the 
OpenPose algorithm finds multiple poses. At that point, the 
problem of correct matching 2D poses from different views 
arises. If OpenPose finds two people on two camera views, 
the backward projection algorithm would create four possible 
3D poses. Although the defined threshold value for backward 
projection eliminates the wrong 3D poses, max-min length 
values for detected body parts are also assigned. These length 
limits validate the result of the backward projection algorithm. 
Fig. 4 shows the pose format of OpenPose and defined max-
min lengths for detected body parts.

Due to occlusions on the bridge, backward projection may 
not be able to construct a complete 3D pose. So, only essential 

Fig. 2. Forward projection

Fig. 3. Backward projection

Fig. 4. OpenPose body joints, colour codes, body parts sequence [22], and defined limits
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body parts are defined. Fig. 5 shows the required body parts 
of the 3D pose and its plotting on the 2D bridge plan. Our 
algorithm seeks those multiple parts in a given sequence, C1 to 
C21, based on those detected first. If any of the combinations 
are found within validated 3D poses, the algorithm plots it on 
the 2D bridge plan. While plotting, Neck or Mid Hip is adjusted 
as a centre of rectangular dimensions 250 mm x 500 mm 
(height x width).

Plotting all of the validated 3D poses of WPs on the 2D 
bridge plan, within a defined time interval, creates a map. 
A heatmap of those plotted poses shows us the motions of WP 
during a watch. The more heated areas on the map represent the 
more occupied locations during a watch. Since the location of 
the navigation equipment is known, the assessment of watches 
can be inferred based on which locations the WP occupied.

CASE STUDY

During the case study, a night watch was used because 
vision-based pose estimation during the nighttime is more 
challenging than in the daytime. Data was collected from 
a real bridge environment. A camera system was established 
on the bridge of a bulk carrier. The installed video cameras had 
clear night vision that would not disturb the WPs. Each video 
camera location and angle of view was adjusted to maximise 
the field of view and minimise the blind spots. The resolution of 
the recorded camera views was 2560 x 1944 pixels, which was 
enough to identify body pose. Three months of video recording 
data were collected from multiple camera views. The proposed 
methodology was applied to generate motion heatmaps and 
the results are given in the following subsections.

Fig. 5. Plotting 3D poses on the 2D bridge plan
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CAMERA CALIBRATION

The calibration procedure required the 3D coordinates of 
the control points and the corresponding pixel coordinates for 
those control points in each camera view. Our data comprised 
video recordings from two video cameras on the bridge. Each 
camera was positioned differently, with a special orientation 
to reduce blind spots. Sample images of the camera views and 
calibration objects are shown in Fig. 6. 380 mutual control 
points were defined. X, Y, Z coordinates of each control point 
and their observed u, v points were recorded for each camera. 
The recorded input data was used to conduct camera calibration 
by the Heikkila method [28].

During calibration optimisation, the intrinsic and extrinsic 
parameters of the cameras were calculated in 20 iterations. 
Fig. 7 shows the extrinsic parameters for two of the cameras, 
along with the control points used; Table 1 shows the recovered 
intrinsic parameters (assumed to be the same for all cameras) 
with average pixel error.

An error of 2.97-3.00 pixels in (u, v) coordinates corresponds 
to a maximum 8 mm error in the world coordinate system. 
These error values are acceptable for detecting and tracking 
human body parts in the bridge environment. The threshold 
values for reprojection errors were set to 5.94-6.00 pixelswhich 
is two times the camera calibration error.

3D POSE CONSTRUCTION 

By using calibrated multiple camera views, the body pose of 
WP could be mapped and tracked in 3D space. However, there 

Fig. 6. Bridge camera views with the calibration object

Fig. 7. Camera extrinsic parameters with used control points

Tab.1. Camera Intrinsic Parameters

Focal Length [1757.47 1761.57] +/- [5.27 5.24]

Principal point [1254.80 956.48] +/- [11.52 7.11]

Skew [ 0.00 ] +/- [ 0.00  ]

Distortion [-0.32 -0.08 -0.00003 -0.00004 0.00 ] 
+/- [0.007 0.007 0.00   0.00  0.00 ]

Pixel error [ 2.97   3.00 ]
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should be 2D poses from each camera, to construct the 3D 
poses. Therefore, a real-time multi-person 2D pose estimation 
algorithm – OpenPose (developed by Cao et al. [22]) – was 
utilised to estimate body poses from multiple views.

The pose detection algorithm seeks the pixel data of each 

joint on each camera image, then combines them properly for 
each possible person in the image. As shown in Fig. 8, poses 
for two people were detected on both camera views. 

Openpose estimated Po11 and Po12 on camera CAM1 and 
Po21 and Po22 on camera CAM2. This means that the backward 

Fig. 8. Results of pose estimation algorithm on each camera image

Tab. 2. Pixel points of each detected joint and possible world coordinates of those joints

Tab. 2. Main particulars of the barge model

BODY JOINTS

Pixel Coordinates of Detected Body Joints (u-v) World Coordinates Of Possible Body Joints (X-Y-Z)

CAM1 CAM2
Pe1 Pe2 Pe3 Pe4Po11 Po12 Po21 Po22

0 Nose 1048-546 2336-1054 443-242 48-358 2783-812-1450 - 4292-2401-1670 3235-2531-1450

1 Neck 947-562 2151-1134 480-232 84-367 2826-645-1434 3664-1594-1431 4168-2230-1597 3270-2392-1355

2 Rsho 839-572 2089-1245 476-229 87-360 2993-612-1448 3725-1574-1397 4207-2215-1611 3443-2377-1362

3 Relb 865-801 2218-1511 480-294 73-433 3021-635-1142 - 4175-2272-1413 3336-2525-1079

4 Rwri 960-960 2358-1219 - 52-376 - - 4209-2358-1562 3297-2559-1357

5 Lsho 1060-538 2168-1022 495-239 85-381 2592-644-1411 3432-1588-1421 4106-2228-1563 3040-2384-1327

6 Lelb 1123-683 2244-1320 482-302 68-447 2567-734-1177 3967-1677-1249 4070-2305-1400 3058-2525-1073

7 Lwri - 2358-1202 - 46-385 - - - 3237-2575-1338

8 Mhip 885-802 1818-1460 564-310 151-457 2764-352-1000 3432-1314-888 3886-1920-1221 3231-2168-879

9 Rhip 804-811 1766-1539 546-327 146-465 2917-361-977 3444-1324-791 3967-1941-1213 3325-2177-847

10 Rknee 909-1029 1729-1828 541-418 154-544 2849-465-592 3627-1393-358 3805-1923-920 3385-2224-476

11 Rankle 960-1270 - - - - - - -

12 Lhip 934-784 1875-1406 587-319 154-468 2610-302-962 3397-1314-890 3835-1913-1193 3092-2175-847

13 Lknee 856-1025 - 595-420 168-557 2801-247-518 - 3814-1865-869 -

14 Lankle 859-1202 - - 194-637 - - 3717-1782-536 -

15 Reye 1026-530 2308-1029 440-233 53-347 2824-812-1486 - 4287-2378-1692 3284-2502-1485

16 Leye 1061-520 2339-997 445-235 55-351 2750-808-1480 - 4265-2369-1679 3180-2509-1469

17 Rear 952-516 2192-1058 470-232 - 2826-673-1473 3612-1629-1465 - -

18 Lear - - - 75-354 - - - -

19 Lbtoe 933-1242 - - 185-645 - - 3652-1831-503 -

20 Lstoe 934-1217 - - 179-655 - - 3667-1863-507 -

21 Lheel 833-1239 - - 217-640 - - 3689-1682-461 -

22 Rbtoe 1024-1350 - - - - - - -

23 Rstoe 987-1355 - - - - - - -

24 Rheel 957-1303 - - - - - - -
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projection algorithm produced four possible 3D poses. The 
pixel points of the joints were detected by OpenPose and the 
3D coordinates of those joints were calculated by backward 
projection and are listed in Table 2. Pe1, Pe2, Pe3, and Pe4 are 
possible 3D poses created by the combination of Po11, Po12, 
Po21 and Po22. When obtaining the 3D poses, only the joints 
detected on both camera views were used by the backward 
projection algorithm.

Table 3 shows reprojection errors for the calculated 3D 
coordinates of joints and the lengths of body parts obtained 
from those joints. While both Pe1 and Pe4 have acceptable 

reprojection errors and part lengths, Pe2 and Pe3 have large 
reprojection errors and unacceptable lengths for more than 
50% of detected body parts.

3D plotting of all the estimated 3D poses and validated 3D 
poses, after elimination, is shown in Fig. 9. It can be seen that 
validated 3D poses of WPs explain the real poses and locations 
of WPs shown in Fig. 8. Since some joints are not detected on 
both cameras, some body parts are missing in the constructed 
3D poses. However, essential body part combination C2 is 
detected for both Pe1 and Pe4. This means that validated 3D 
poses can be mapped on the 2D bridge plan.

Tab. 3. Reprojection errors and lengths of body parts

Fig. 9. 3D pose of WPs

BODY JOINTS
Reprojection errors of calculated 3D Body Joints 

(<6 pixels) Body
Parts 

Sequence

Lengths of Body Parts 
(mm)

Pe1 Pe2 Pe3 Pe4 Filters Pe1 Pe2 Pe3 Pe4

0 Nose - 240-818 - 3-5 1-8 400-600 528 655 563 528

1 Neck 2-8 163-591 696-109 5-3 1-2 140-250 171 72 44 174

2 Rsho 1-2 160-597 696-136 1-0 1-5 140-250 235 233 71 231

3 Relb 5-11 252-647 - 4-3 2-3 250-400 308 - 209 336

4 Rwri - 288-549 - 7-1 3-4 200-300 - - 176 283

5 Lsho 2-6 158-580 614-102 14-10 5-6 250-400 252 569 183 291

6 Lelb 1-2 226-649 848-60 6-2 6-7 150-300 - - - 323

7 Lwri - - - 4-1 8-9 75-200 154 98 83 100

8 Mhip 7-7 149-420 521-142 2-1 9-10 350-500 405 475 336 378

9 Rhip 4-8 161-467 482-145 9-7 10-11 350-500 - - - -

10 Rknee 2-4 189-416 473-105 4-2 8-12 150-300 166 35 59 142

11 Rankle - - - - 12-13 400-500 487 - 328 -

12 Lhip 7-5 146-421 550-120 1-1 13-14 400-500 - - 357 -

13 Lknee 1-1 184-426 - - 1-0 150-250 173 - 224 172

14 Lankle - 192-389 - - 0-15 50-100 54 - 32 66

15 Reye 0-1 219-775 - 2-6 15-17 50-100 140 - - -

16 Leye - 209-753 - 3-1 0-16 50-100 44 - 43 63

17 Rear 2-7 - 676-96 - 16-18 50-100 - - - -

18 Lear - - - - 14-19 350-500 - - 87 -

19 Lbtoe - 196-366 - - 19-20 60-120 - - 35 -

20 Lstoe - 203-394 - - 14-21 80-120 - - 128 -

21 Lheel - 178-355 - - 11-22 350-500 - - - -

22 Rbtoe - - - - 22-23 60-120 - - - -

23 Rstoe - - - - 11-24 80-120 - - - -

24 Rheel - - - - Detected Parts 13 7 17 13

Avg error 3.5 364.6 365.2 3.9 Acceptable Parts 13 3 4 13
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MOTION HEATMAP GENERATION

Estimated 3D poses of WPs are plotted onto the 2D 
bridge plan shown in Fig. 10. The position of the Neck is 
adjusted as the centre of the rectangle and the dimensions 
are 250 mm x 500 mm (height x width). 

As shown in Fig. 10, one WP is standing on the Electronic 
Chart Display and Information System (ECDIS), which is the 
navigating software program, while another is in the look-out 
area, which is the infront of the electronic navigation equipment. 
This may mean that the officer WP is checking the position of 
the vessel on the ECDIS, while the lookout WP is continuing 
as a look-out to detect collision situations. However, a single 
screenshot of the watch is not enough for that assessment. The 
evaluation should be based on the behaviour of WPs within 
a time interval. Heatmap plotting of estimated 3D poses on the 
2D bridge plan, within defined time intervals, is assumed to 

fulfil evaluation criteria. Although there should be a continuous 
and proper look-out at all times, during dense marine traffic, 
more attention should be given by both WPs. As well as a look-
out, proper use of other electronic navigation equipment is 
also essential to avoid collisions. A ship’s position should be 
checked periodically, depending on the proximity to shallow 
waters and how dense the marine traffic is. Broadly speaking, 
the importance of watchkeeping can be classified depending on 
navigation areas, such as shallow waters, coastal waters, and open 
seas. Heatmaps should be adjustable, based on those navigation 
areas. The defined period for BNWAS is 3 to 12 minutes [12]. 
The same intervals can be assigned for our heatmaps as follows: 
3 minutes for shallow waters, 6 minutes for coastal waters, and 
12 minutes for open seas. In this study, the motion heatmaps 
generated within 12 minute intervals are presented in Fig.11. 

Visual checks show that, during Case 1, the lookout stays 
and walks on the look-out area, while the OOW uses the 

Fig. 10. Plotting 3D poses on the 2D bridge plan
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ECDIS, Radio Detection and Ranging (RADAR), Auto Pilot-
Helm, Global Maritime Distress and Safety System (GMDSS) 
console, and navigation table. During Case 2, the lookout 
still uses the look-out area, however, the OOW largely uses 
the navigation table. In Case 3, the lookout just stays in the 
same place and the OOW stays on the ECDIS and sits on the 
chair. In the final case, the lookout walks in the look-out area, 
while the OOW uses all of the navigation equipment, except 
the GMDSS console. These cases show the brief behaviour of 
WPs for the defined period. 

Since the performance of WPs is affected by how they follow 
their responsibilities, heatmaps provide simple and significant 
information for understanding what they are doing during 
their watch. In that respect, motion heatmaps explain the 
behaviour of WPs, providing suitable input data for training 
a model on behavioural analysis of WPs. 

DISCUSSION ON FINDINGS

Camera calibration results show that pixel coordinates 
can be converted to world coordinates by using the 
backward projection algorithm with a maximum 8 mm error 
(~3.00 pixel). This error can be reduced to a sub-pixel value 
[33], [34] by using a more accurate calibration object with 
precise localisation on the bridge. However, acceptance of the 
error value depends on the task to be performed. The plotting 
algorithm for motion heatmaps creates a rectangle with the 
dimensions 250 mm x 500 mm. 8 mm error in both X and 
Y axes is equal to a 0.05% predicted plotting area. In other 
words, camera calibration has 99.95% accuracy in motion 
heatmap generation. 

The accuracy of the 3D pose construction depends on 
the accuracy of both the 2D pose estimation algorithm and 
camera calibration. The heatmap generation algorithm seeks 
a combination of neck, shoulders and hip joints and plots 

‘neck’ or ‘mid-hip’ on the map. The accuracy of OpenPose on 
those key joints is ~85% on the MPII human multi-person 
dataset [35]. Since the camera calibration has too small an 
error, compared to Openpose, 3D pose construction accuracy 
is equal to the 2D pose estimation algorithm. There is a trade-
off between accuracy and speed, when choosing the right 
pose estimation algorithm. Collected high-resolution video 
recordings have 12 frames per second (fps) and there are always 
multiple persons on the bridge. The pose estimation algorithm 
should work with at least 24 fps, to estimate multiple poses 
from two video cameras in real-time. Only the OpenPose 
running in NVIDIA GeForce GTX-1080 Ti GPU and i7-6850K 
CPU is satisfying that requirement for this research. Fps can 
be lowered, to enable more accurate algorithms running real-
time, such as AlphaPose [29] or METU [36]. Nevertheless, lower 
fps means that fewer frames will be used to produce motion 
heatmaps. This will lead to a non-smooth tracking with pose 
jumps. So, Openpose is the most appropriate algorithm for the 
time being, however, if a new pose estimation algorithm which 
would have more accurate results with more fps is developed 
in the future, it can be easily adapted to the system developed 
in this research. 

Direct tracking of 3D pose features that present full 
information about the physical activities of WP can be 
proposed as an input. Only the uninterrupted, complete 
3D pose construction can make this possible. Navigation 
equipment obstruct constructing complete 3D poses. Rather 
than tracking completed 3D poses, another input producing 
method should be suggested. Monitoring the watchkeeping 
behaviour of WP is mainly based on whether the WP is 
following the routines of the navigation watch. The location 
where WPs stand and the time they spend at that location 
are proof that they are following those routines. While the 
motion heatmap generation developed in our research works 
with incomplete 3D pose information, it captures temporal as 
well as spatial information. The motion heatmaps shown in 

Fig. 11. Motion heatmaps of 3D body poses belonging to 12 minutes period of a night navigation watch
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Fig. 11, present the behaviour of WPs within the defined time 
interval. In that respect, heatmaps of body motions is a novel 
approach to generate input for training a deep learning-based 
behaviour analysis model.

CONCLUSIONS

IMO recognises that many operational bridge-related 
marine accidents are caused due to the lack of a  system 
detecting the incapacity of the OOW. IMO makes the BNWAS 
mandatory for the ships defined in Resolution MSC.282(86) to 
avert those accidents. However, the defined system is very basic 
and vulnerable to abuse. There is a need for a more advanced 
system to mitigate watchkeeping errors and improve the safety 
of navigation. In this study, BNWMS, which continuously 
monitors the behaviour of WP autonomously, is suggested 
to fill this gap. Automated motion heatmap generation is 
developed to provide input data for BNWMS.

A multi-video camera system was established to obtain 
data from an actual bridge. A real-time multi-person 2D pose 
estimation algorithm was run on each camera view to estimate 
2D body poses. The backward projection method constructed 
3D body poses from binary 2D poses. Although the defined 
error function in backward projection eliminates wrong 3D 
poses, a filtering algorithm was developed to validate the 
results. Validated 3D body pose features were plotted on the 
2D bridge plan to generate motion heatmaps of WPs within 
a defined time interval.

The results show that it is possible to obtain motion 
heatmaps that give important information about watchkeeping 
behaviour. Automated motion heatmap generation is a novel 
approach to produce input data for behaviour analysis of WPs. 
An expert can make visual evaluations with the heatmaps 
of certain periods constructed in this study. However, the 
final goal is to automate the whole process by establishing 
BNWMS. Therefore, training a deep learning model using 
motion heatmaps to make the evaluation process by machine 
forms part of our future work.

This is the first study of vision-based behaviour analysis 
on a ship’s bridge. It is thought that this study, which is the 
first in its field, will be the basis for a series of other studies. 
In addition, the approach in this study will pave the way for 
behaviour analysis in environments other than ships (such as 
factories) that require working in a large area.
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