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ABSTRACT

The paper presents a multi-objective method, which optimises the route of a sailboat. The presented method makes 
use of an evolutionary multi-objective (EMO) algorithm, which performs the optimisation according to three objective 
functions: total passage time, a sum of all course alterations made during the voyage and the average angle of heel. The 
last two of the objective functions reflect the navigator’s and passenger’s comfort, which may decrease with multiple 
turns or when experiencing an excessive heel angle for a long time. The optimisation process takes into account static 
bathymetry-related constraints as well as dynamic constraints related to the sailboat’s safety in changing wind and 
wave conditions. The method makes use of all of the above and finally returns an approximated Pareto set containing 
non-dominated solutions to the optimisation problem. The developed method has been implemented as a simulation 
application. The paper includes selected simulation results followed by their discussion. 
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INTRODUCTION

WWeather routing is planning a ship’s route including 
weather conditions, which are essential to the navigability of 
the sailing vessel. Choosing the right route affects not only 
the travel time, but also its safety, as well as the comfort of 
passengers and crew. The weather’s impact is particularly large 
in the case of sailboats. Adverse wind conditions may greatly 
increase the passage time. They may also result in excessive 
heel angles, thus causing major discomfort for people on 
board or even compromising the sailboat’s safety. The paper 
addresses this problem by proposing a  multi-objective 
sailboat weather routing optimisation method. The method 
applies an improved Strength Pareto Evolutionary Algorithm 
(SPEA 2) [1], which performs the optimisation according to 
three objective functions: total passage time, the sum of all 
course alterations made during the voyage and the average 
angle of heel. Instead of aggregating these objectives into one, 
the algorithm searches for a Pareto-optimal set containing 

all non-dominated solutions. The number of non-dominated 
solutions may vary depending on the circumstances and in 
some cases it may be too large, making it hard for the navigator 
to choose one route to follow. Therefore a preference-based 
approach called r-dominance [2] is additionally applied here. 
The navigator can specify a reference solution as a point 
in the 3-dimensional objective space. The specified point 
represents desired or acceptable values of all objectives. Owing 
to this, the optimisation method is able to focus on solutions 
reflecting the navigator’s preferences, which results in a shorter 
processing time, better approximation of the true Pareto 
set and a limited set of final solutions to choose from. The 
method has been implemented as a software tool. Following 
this, a series of computer simulations have been carried out. 
Their results confirm the method’s effectiveness (given by the 
quality of the recommended routes) and efficiency (acceptable 
computational time for all scenarios). The rest of the paper 
is organised as follows. Section 2 presents current research 
in the field of weather routing and points out limitations of 
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the various approaches applied. Section 3 describes weather 
routing as an optimisation problem. Section 4 describes 
the proposed weather routing optimisation method, which 
solves this problem. Following this, Section 5 contains the 
results of the simulations carried out using the proposed 
method. Finally, the summary and conclusions are presented 
in Section 6.

RELATED WORKS 

Published works on weather routing of sailboats are 
relatively few; however, the discussed problem is closely 
related to weather routing of merchant ships, which has been 
widely researched. Nowadays, in maritime shipping, a travel 
plan is required by the International Convention for the Safety 
of Life at Sea (SOLAS) and requires planning of the route 
before starting a sea journey [3]. Route planning applies to 
all vessels, including sailing ones. Route planning depends 
on the user’s requirements, including the need to perform the 
tasks and taking into account the restrictions arising from 
the existing conditions in the area of navigation. There are 
different approaches to developing route planning methods 
for vessels, and the methods that are being used can be divided 
into two groups: deterministic and non-deterministic. The 
first are methods that repeatedly return the same solution 
for the same input data. Updating the input data or changing 
the method itself can lead to returning a different solution. 
The second group are non-deterministic methods, which are 
usually applied in situations when deterministic solutions 
would be too time-consuming. 

In deterministic methods we can distinguish isochron 
methods [4, 5], dynamic methods [6–9] as well as those 
rooted in a graph theory. The isochron method is based on 
the analysis of meteorological forecasts, and knowing the speed 
characteristics of the ship it is possible to manually determine 
the minimum time path. In dynamic methods, the next Pi 
position, with the Si state, depends directly on the Si + 1 state. 
As for graph-oriented methods, when all possible waypoints 
are defined and the possible flows between them are known, 
one can implement routing as determining the optimal path 
in the graph. Examples include methods using the modified 
Dijkstra algorithm [10–15] or the A *algorithm [16, 17].

Non-deterministic methods may include genetic and 
evolutionary methods, methods based on distributed 
intelligence, and  others. Both genetic and evolutionary 
methods [18–21] are based on the heuristic algorithm for 
finding solutions according to natural selection. As this group 
is based on distributed intelligence [22–24] their idea is derived 
from imitating the behaviour of living beings (e.g. ants, bees 
or wolves). Other examples of non-deterministic routing 
methods include rapid walking [25].

Routing methods differ greatly in their range of use and 
include transoceanic routing based on long-term weather 
forecasts as well as relatively short-distance planning, which 
may take into account local weather data [26, 27] downloaded 
on route by means of a wireless network [28]. The common 

feature of most of the above methods is that they rely on 
single-objective optimisation. Exceptions are few and 
concern solely the routing of merchant vessels [22, 23, 29]. 
As for methods dedicated to sailboats, up till now they have 
applied multiple objectives by means of a single aggregated 
goal function [13, 14]. Such an approach is seriously limiting 
because it excludes many potential solutions, which cannot 
be obtained this way. The current paper aims to fill this gap 
by offering a truly multi-objective method of weather routing 
for sailboats.

SAILBOAT WEATHER ROUTING  
AS A MULTI–OBJECTIVE OPTIMISATION 

PROBLEM
In the considered problem, a vector of three objective 

functions F(x)  (1) is subject to optimisation. The vector 
consists of the total passage time, ftime (2), the sum of direction 
changes fchdir (3) within a route and the weighted average of 
heel angles fheel (4) computed over all route segments. 

F(x) = [ftime , fchdir , fheel ]     (1)

ftime =  → min      (2)

fchdir =  Δαk,k+1 → min     (3)

fheel =  → min     (4)

where:
si ‒  distance covered by the sailboat on the i-th segment 

of a route,

si = 

Vi  ‒  sailboat’s speed on the i-th segment of a route 
(between points k and k + 1)

V (Pk , Pk+1) = γ (  , αi,i+1) = γ (wk, βi,i+1)

where:
αi,i+1  – direction from point Pk to Pk+1
βi,i+1  –  angle between the sailboat’s course and true 

wind direction
wk  – wind speed
γ (wk, βi,i+1) –  sailboat’s speed calculated on the basis of the 

polar diagram for a given wind speed wk and 
direction βi,i+1

φi  ‒ tilt on the i-th segment of a route [rhumb]
ti  ‒ time to complete the i-th segment of a route [h]
t  ‒ time to cover the entire route, t =   [h].

The control variables of each route are geographical 
coordinates of route waypoints – a sequence of latitude and 
longitude values.
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The goal is to minimise simultaneously all three objective 
functions, while making sure that the solutions are acceptable 
in terms of meeting the constraints. The choice of objective 
functions is supposed to reflect the practical needs of various 
potential decision makers. As for the heel angle, it reflects both 
the passenger’s safety and comfort, though other objectives 
are possible here, namely roll velocity or roll acceleration, as 
mentioned in [30].  In general, the three objective functions 
may be contradictory; for example, smooth routes usually take 
more time. Therefore in practice the result of the optimisation 
process is not one route but a set of Pareto-optimal routes, 
where each route within the set is defined by a sequence of 
waypoints – pairs of latitude and longitude geographical 
coordinates.

A solution is acceptable if the following constraints are 
met throughout the route:

•  the ship’s safety isobath is not violated,
•  the heel angle does not exceed a maximum acceptable 

value (defined by the user),
•  the wind’s speed does not exceed a maximum acceptable 

value (defined by the user).
The optimisation problem given above can be approached 

in a  number of ways, applying both deterministic and 
indeterministic methods mentioned in the section on related 
works. Deterministic approaches include the multi-objective 
Dijkstra algorithm, multi-objective dynamic programming 
and multi-objective linear convolution of the functional. 
Their huge advantage is that, given enough time, they always 
converge to the optimal solution set. However, considering 
the complexity of map-derived constraints, deterministic 
approaches are not always acceptable in terms of time-
efficiency, as their computational time rises with the size of the 
map and number of waypoints, as observed in [31]. Therefore, 
an indeterministic approach has been chosen here, namely, 
one of evolutionary multi-objective optimisation algorithms 
(EMO). Details are provided in the following section. 

THE PROPOSED METHOD  
OF WEATHER ROUTING

In this section the proposed method is described in detail, 
covering the applied multi-objective evolutionary algorithm 
SPEA2 (The Applied Algorithm section), 

THE APPLIED ALGORITHM 

The proposed method uses an evolutionary multi-objective 
(EMO) algorithm to solve the problem. EMO algorithms 
belong to multi-objective metaheuristics (MOMH), whose 
common feature is that they search for a Pareto-optimal set 
containing all non-dominated solutions to a problem. For 
minimisation of all objectives, a solution y is non-dominated if 
there is no other solution x in the set, for which the following 
dominance relation would hold true:

i(fi(x) < fi(y)) and i(fi(x) ≤ fi(y)), where fi(x), fi(y) 
are the values of the i-th objective for solutions x and y.

It is worth mentioning that an acceptable solution (one 
that meets the constraints) always dominates an unacceptable 
one, even if the latter has better (here – lower) values of all 
objectives.

What distinguishes EMO algorithms from other MOMH 
approaches is that they implement mechanisms similar to those 
observed during evolution in nature. Randomly generated 
individuals are subject to mutation and crossbreeding 
processes, creating a new population of individuals in which 
units with a higher adaptation rate have greater chances of 
survival and extension, according to pre-set criteria. In general, 
the operation of each evolutionary algorithm is based on 
a loop, which is formed successively by reproduction, genetic 
operations, evaluation and succession. It is visualised in Fig. 1. 

From among many algorithms of evolutionary multi-
objective optimisation, the improved Strength Pareto 
Evolutionary Algorithm (SPEA2) was selected to solve the 
problem specified in Section 3. SPEA2 extends the classic 
evolutionary approach from Fig. 1; here the main algorithm 
loop consists of the following elements:

•  Initialisation – the initial base population and empty 
archive are generated at this stage.

•  Fitness assignment – fitness values are calculated for all 
individuals.

•  Environmental selection – all non-dominated individuals 
are copied to the next population.

•  Termination – if any of the end conditions are met at 
this stage, the loop should be stopped.

•  Mating selection – followed by a binary tournament 
selection of parents, who will reproduce.

•  Variation – recombination and mutation takes place, 
a new generation follows, the future population becomes 
present, go to Fitness assignment.

As for initialisation, the base population includes: 
orthodrome and loxodrome routes (including their random 
variations) as well as purely random routes. There is no 
guarantee that any route from the initial population is 
acceptable; however, they are systematically improved by 
the process in the course of subsequent generations, which 
is given in Fig. 2. 

Fig. 1. The loop of operations in an evolutionary algorithm framework
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SELECTED PREFERENCE-BASED APPROACH

A popular approach in Multi-Objective Meta- Heuristics 
(MOMH) is to take into account user preferences, whereby 
the algorithm may focus on the part of the objective space 
that is most interesting to the user. Among others, limiting 
the objective space results in reduction of the Pareto front 
and thus in a faster convergence of the algorithm. Making 
use of the preferences can be done in a number of ways [32]. 
A common one is that of a reference point (RP) – a point in the 
objective space, which represents a solution that is desired and 
seems possible to reach by the method [33–35]. An RP may be 
directly used for dominance relation [2, 36], thus extending 

strict Pareto dominance. Of various RP-based methods, 
r-dominance [2] is particularly successful and flexible and 
has therefore been chosen to be applied here.

The r-dominance mechanism works as follows. First a user 
specifies a reference point (RP) – the desired values of all 
objective functions. The task of the algorithm is then to strive 
to reach final values as close to the set values as possible while 
maintaining dominance in the Pareto sense.

This means that non-dominated solutions that have 
a smaller distance from the RP in the space of optimal 
solutions will be rated better than non-dominated solutions 
at a larger distance from the RP. This distance is expressed 
by the following formula (5):

Fig. 2. SPEA2 algorithm framework
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wi  ] 0,1 [  wi = 1     (5)
where:
Dist(x, g) –  weighted Euclidean distance between point x 

and g,
x   – a solution that is considered,
g   – reference point with i coordinates,
fi

max   – upper limit of the value of the i-th goal function,
fi

min   – lower limit of the value of the i-th goal function,
wi   ‒ weight assigned to the i-th goal function.

APPLYING THE ALGORITHM TO SOLVE  
THE OPTIMISATION PROBLEM

In order to apply the algorithms, apart from algorithm 
implementation, two kinds of mechanisms have to be 
prepared first:

•  checking if all constraints are met (including safe distance 
from landmasses, acceptable heel angle and acceptable 
wind speed),

•  determining objective functions values.
Of all the constraints, checking the geographical ones is 

most time-consuming. First, an electronic navigational chart 
has been converted to a bitmap to make use of the bathymetric 
data [37]. Following this, information on whether a map 
cell is passable or not can be read directly from a bitmap. 
Consequently, it is possible to check if a route segment does 
not cross any landmass or safety isobaths. It is assumed that 
the route must be at least one bitmap cell away from the safety 
isobath. As for the other constraints, wind speed is read directly 
from a saved weather forecast file, while the heel angle is read 
from the sailboat’s polar diagram provided for a particular 

combination of wind speed and relative angle between the 
sailboat’s course and the true wind direction. 

The detailed values of constraint thresholds assumed for 
simulations are as follows:

•  maximal acceptable angle of heel – 30 degrees,
•  minimal acceptable distance from safety isobath – the 

size of a bitmap cell: 0.17 NM (315 m).
The sailboat’s speed can be read directly from the provided 

diagram of velocity polar prediction (VPP) [14]. Knowing the 
sailboat’s speed and heel angle for all the sampled combinations 
of wind conditions and sailboat courses, all the objective 
function values can be computed for each segment of the 
route. Having done this, each objective value is aggregated over 
all route segments and the final objective values are obtained.

SIMULATION RESULTS

In this section examples of simulation results are provided 
and discussed. Brief descriptions of all scenarios, followed by 
their detailed results, are given in the next four subsections. 
This is followed by a discussion of the results. 

Throughout all the scenarios the same sailboat was used, 
whose parameters are presented in Table 1, with the polar 
diagram given in Fig. 3. 

Fig. 3. A polar diagram of VPP and angle of heel, source [34]. True wind speed: 1 – 12 kt, 2 – 14 kt, 3 – 16 kt, 4 – 18 kt, 5 – 20 kt

Tab. 1. CONRAD 1200 RT – sailing vessel details

Parameter Value []

Volume (displaced) 8.450 m3

Draft amidships 2.0 m

WL length 12.00 m

Beam max extents on WL 3.1 m

Sail area 80 m2
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The following parameter values are used there: true wind 
speed Vr: 1 – 12 knots, 2 –

14 knots, 3 – 16 knots, 4 – 18 knots, 5 – 20 knots. → – true 
wind direction with velocity vT [w], γ – heading angle of vessel 
[0], v – speed forecast of vessel: v = v (vT , γ).

Additional data for all four scenarios is presented in 
Table 2, where the travel direction, wind conditions (direction 
and speed) and applied objective functions are given. Finally, 
the SPEA2 and r-dominance settings are given in Table 3.

SCENARIO 1

Scenario 1 involves finding a route from the Gulf of Gdańsk 
to Świnoujście in mild weather conditions for two optimisation 
objectives: total passage time and average angle of heel. The 
resulting set of solutions approximating true Pareto-optimal 
routes is shown in Fig. 4. Objective values of all selected routes 
are visualised in the 2-dimensional objective space in Fig. 5.

SCENARIO 2

Scenario 2 involves finding a route from the Gulf of Gdańsk 
to Świnoujście in the same weather conditions as scenario 1, but 
this time for three optimisation objectives: total passage time, 
average angle of heel and the sum of all direction changes. The 
resulting set of solutions approximating true Pareto-optimal 
routes is shown in Fig. 6. Objective values of all selected routes 
are visualised in a 3-dimensional objective space in Fig. 7.

Tab. 2. Input data for all four scenarios

Scenario From To
Number of 
objectives

Wind directions and speeds for subsequent periods of travel [m/s] / [kt]

1 3 3

1 Gulf of Gdańsk Świnoujście 2 5.12 / 10 NE 6.6 / 12.8 NE 5.9 / 11.5 NE

2 Gulf of Gdańsk Świnoujście 3 5.12 / 10 NE 6.6 / 12.8 NE 5.9 / 11.5 NE

3 Świnoujście Gulf of Gdańsk 3 5.12 / 10 NE 6.6 / 12.8 NE 5.9 / 11.5 NE

4 Świnoujście Gulf of Gdańsk 3 13 / 25.3 NE 13.78 / 26.8 NE 13.4 / 26 NE

Fig. 4. Routes found in Scenario 1

Fig. 6. Routes found in Scenario 2.

Fig. 5. Objective values of routes found in Scenario 1

Fig. 7. Objective values of routes found in Scenario 2

Tab. 3. SPEA2 and r-dominance settings

Parameter Time  
[hours]

Total 
direction 
changes

Angle 
of heel 

[degrees]

Reference point coordinates 30 20 15

Weights for 2- objective 
case (Scenario 1) 0,7 – 0,3

Weights for 3- objective 
cases (Scenarios 2, 3 and 4) 0,6 0,2 0,2
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As can be seen, the addition of a third goal function, the 
one minimising the sum of course changes, has smoothed 
the route shape. Previously, when only voyage times and 
average angle of heel were minimised, frequent multiple 
turns were visible (Fig. 4). Their purpose was to increase the 
sailboat’s speed on a given segment of a route by making 
the best use of the wind. Such policy made the total time 
shorter but the routes would be harder to follow, especially for 
a less experienced sailor. Now, after incorporating the third 
objective, the routes are now less diverse, much closer to each 
other and easier to follow, as they do not include so many 
turns. However, the smoothness of the routes is obtained at 
the cost of a much longer voyage time – it grows from 30‒40 
hours (Scenario 1) to over 60 (Scenario 2). Smoother routes 
also result in a much smaller average angle of heel. The latter 
can be attributed to very sharp heel angle curves in the left 
part of Fig. 3. Namely, a small change in the relative angle to 
the wind may cause a significant difference in the heel angle.

SCENARIO 3

Scenario 3 involves finding a route back from Świnoujście 
to the Gulf of Gdańsk for all three optimisation objectives. The 
resulting set of solutions approximating true Pareto-optimal 
routes is shown in Fig. 8. Objective values of all selected routes 
are visualised in a 3-dimensional objective space in Fig. 9. 
As can be seen, the routes have different shapes from those 
in Scenario 2. Because of sailing in the opposite direction, 

the sailboat faces different wind conditions, which results in 
different turns made to minimise the objective values.

SCENARIO 4

Scenario 4 again involves finding a route from Świnoujście 
to the Gulf of Gdańsk for all three optimisation objectives. 
This time, however, the sailing conditions are much harder 
due to a very strong wind. The resulting set of solutions 
approximating true Pareto-optimal routes is shown in Fig. 
10. Objective values of all selected routes are visualised 
in a 3-dimensional objective space in Fig. 11. The strong 
wind seriously limits the manoeuvring possibilities of the 
sailboat – not all courses are taken into account, as some 
of them would result in excessive heel angles (larger than 
the assumed limit of 30 degrees). This limitation translates 
to a much smaller choice of acceptable solutions, which in 
turn limits the final set of Pareto-optimal routes, with fewer 
optimal routes. However, all of the returned Pareto-optimal 
routes are very good in terms of objective values. Strong wind 
makes it possible to achieve a greater speed and thus reduces 
the travel time. The shapes of the routes are smoother, with 
a smaller number of turns. Multiple turns are avoided because 
they could lead to a much larger sum of direction changes, 
lower average speed and larger angle of heel for some of the 
route segments. In contrast, smooth routes make it possible 
to avoid the latter, thus achieving a successful minimisation 
of all objectives simultaneously.

Fig. 8. Routes found in Scenario 3.

Fig. 10 . Routes found in Scenario 4

Fig. 9. Objective values of routes found in Scenario 3

Fig. 11. Objective values of routes found in Scenario 4
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SUMMARY AND CONCLUSIONS

The article presents the multi-objective evolutionary 
method, which searches for the optimal routes of a sailboat 
navigating in changing wind conditions. The method uses an 
improved Strength Pareto Evolutionary Algorithm (SPEA 2), 
additionally enhanced by a preference-based r-dominance 
method, which is applied to improve the algorithm’s 
performance and to focus on solutions which are compliant 
with the navigator’s preferences. For this reason, the method 
is able to return the routes faster while making sure they are 
customised for a particular user. The routes obtained bypass 
obstacles in the form of land and choose the course with the 
most favourable position to the wind. The aim is to complete 
the route as quickly as possible while maintaining reasonable 
safety and comfort throughout the voyage. The method was 
tested in a series of computer simulations, whose examples are 
provided in the text. The simulation results vary, depending 
on the chosen scenario. First, the results differ for two and 
three optimisation objectives. By adding the third objective, 
namely, a sum of course changes, one can limit the number 
and size of turns, thus simplifying the task of following 
a route. The influence of weather conditions on the shape of 
the route is also visible. When encountering strong wind, the 
method returns a reduced set of solutions, because there are 
fewer acceptable ones to choose from. The resulting routes are 
then smoother because such shape translates to greater safety, 
comfort and efficiency of travel, and the smallest possible 
inclination. In general, the experiments confirmed that the 
chosen method can be an interesting alternative to the already 
existing ones and that the multi-objective approach can offer 
flexibility of the navigator’s modelling within an acceptable 
computational time. 

For now, the presented method suffers from some 
simplifications in the modelled environment. Among 
others, passenger comfort is modelled by the average angle 
of heel, whereas roll velocity and acceleration are often more 
uncomfortable in practice. Also, the method does not take 
into account such factors as the influence of waves or sea 
currents on the sailboat’s speed. It is planned, however, to 
include these elements in upcoming research that will focus 
on utilising more advanced modelling to bring the method 
closer to marine reality. Once this is done, experiments with 
a real sailboat are envisaged. Other plans include handling 
the uncertainty of weather predictions by means of ensemble 
forecasts and refining the optimisation algorithm.
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