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ABSTRACT

The objective of this work is to investigate the structural compressive response of plates with locked cracks accounting 
for all relevant factors and correlation between them. The nonlinear FE model considering both geometric and material 
nonlinearities is employed herein, and the FE model of the structural response of intact plates is validated with the 
available experimental data. In the common studies, based on One Factor at a Time analysis, some of the parameters 
and interactions between them are excluded. In the present study, the numerical investigations are conducted with 
the use of the Design of Experiments techniques, where all essential parameters and their interactions are adequately 
considered. With a total of 32 numerical analyses, the most influential factors and their interactions are identified. 
As a study outcome, empirical formulations, which allow for a fast estimation of the ultimate compressive strength of 
intact plates, plates with locked cracks, and repaired cracked plates, are derived. The developed formulations represent 
a fast and practical tool for estimating the ultimate compressive strength of intact, cracked, and repaired plates, which 
can be easily employed in the reliability analysis.results followed by their discussion. 
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INTRODUCTION

Ships and offshore structures are subjected to different 
degradation effects, such as corrosion and cracks and 
deformations [1, 2]. The latter could be the result of fatigue 
damage or impact loads. The fatigue cracks are often 
undetected, and they can have an impact on the strength 
reduction of structural components.

The effect of locked cracks and their influence on the load-
carrying capacity has been investigated experimentally and 
numerically for some years now. Some of the first attempts 
to assess the importance of a transverse crack to the buckling 
capacity of plates were made in [3–6], showing the importance 
of this problem. In all cases, the buckling strength was 
significantly lower compared to non-cracked plates. Further 
studies were performed analysing the elastoplastic collapse, 
considering the geometry, and material nonlinearities. One 

of the more advanced studies was conducted by Paik et al. [7], 
where both numerical and experimental analyses were carried 
out. They found that the presence of cracks can significantly 
reduce the ultimate strength of plates (by up to 50%).

Additionally, the conservative estimation of strength 
reduction is related to the cross-sectional area reduction 
with the presence of a crack. However, due to the cycling load, 
which may change from tensile to compressive, in some cases 
the cracks may close, and then their behaviour is somehow 
similar to a non-cracked plate. Additionally, nonlinear FE 
analysis was found to be a useful tool in predicting the 
behaviour of cracked plates subjected to compressive load.

A quite comprehensive review related to the ultimate 
strength of cracked ship structural elements was presented 
in  [8]. A  limited number of experimental studies were 
conducted with regard to cracked plates [7, 9] and cracked 
stiffened plates [10]. However, only a  limited number of 



POLISH MARITIME RESEARCH, No 3/2020110

cases were investigated. The joint effect of locked cracks and 
openings was experimentally investigated in [11], showing 
that the presence of these two phenomena could result in 
a significant loss of plate capacity. Additionally, it is hard to 
model the boundary conditions in the experimental domain, 
and these may differ from the joining conditions of real ship 
structural components. Recently, more attention has been paid 
to the numerical analysis. The ultimate strength of different 
structural elements subjected to cracks was investigated, 
including plates [12–16], stiffened plates [15, 17], stiffened 
panels [18], box girders [19] and ageing ship hulls [20]. Based 
on these studies, the governing factors that have the most 
influence on the structural capacity reduction can be identified. 
The governing parameters that may be identified with regard 
to the impact of the crack are the crack length, crack location, 
crack orientation, and the shape of the crack tip. In all studies, 
for transverse cracks, the reduction is higher with increase of 
the crack length. In the case of the longitudinal orientation 
of locked cracks, no significant effect is observed in most of 
the studied cases. However, some studies recognise that this 
parameter is a relevant one. In the case of the crack tip shape, 
in [21] and [22] it was shown that it will not influence the 
ultimate strength in general. However, the stress concentration 
around the crack tip will be influenced by the FE mesh density 
and tip shape. 

Nevertheless, the factors that typically influence the ultimate 
strength of plates will potentially interact with the crack 
parameters, such as the plate slenderness ratio, plate aspect 
ratio, and welding-induced imperfections and residual stresses. 
The combined effects of cracking and initial imperfections 
were studied in [16]. It was concluded that for small cracks, 
the ultimate strength is additionally reduced for the higher 
levels of initial distortions. However, in the case of long cracks, 
the crack damage effect plays a dominant role. 

Based on the different studies, empirical formulations 
were developed too. Babazadeh and Khedmati [21] derived 
empirical formulations for the ultimate strength reduction of 
transversely cracked plates as a function of the crack length, 
plate slenderness ratio, and plate aspect ratio. In contrast, 
Paik et al. [7] derived the formula as a function of the plate 
slenderness ratio and crack length. 

Although in previous studies the importance of different 
individual factors was investigated, investigations that take 
into account all relevant factors and their joint effect seem to 
be lacking. Additionally, the studies usually used the OFAT 
(One Factor At a Time) [23] technique during the sensitivity 
analysis, i.e. they changed only one parameter, leaving the rest 
of them unchanged. This technique is very good for initial 
studies to examine the relevant parameters. However, the 
possible interaction between factors is lacking. To investigate 
that, the DoE (design of experiments) [24] methodology seems 
to be suitable. Another benefit of the DoE is the significantly 
reduced number of observations compared to OFAT analysis. 
Based on the DoE analysis, the response surface takes into 
consideration the relevant factors, and the interactions between 
them can be established with a significantly lower number 
of observations compared to classical regression analysis. 

Depending on the considered experimental plan, the response 
surface may be linear or nonlinear.

The objective of the present study is to assess the ultimate 
strength of cracked plates subjected to compressive loads with 
the use of the nonlinear FE method and DoE techniques. At 
the beginning, all relevant parameters related to the locked 
crack, as well as the plate, are taken into consideration. 
However, based on the OFAT analysis some of them are not 
considered further due to their lower impact. The present 
study also investigates the importance of the variables 
related to the drilling holes, which are commonly used to 
stop crack propagation in emerging cases. Furthermore, once 
the most important governing parameters are identified, 
the ultimate strength assessment with the predefined DoE 
plan is conducted. As a result, the most influential factors 
and interactions are found. Additionally, the response 
surfaces, allowing for fast estimation of the ultimate strength 
of cracked plates as well as intact and repaired plates, are 
established, and the results are compared with other existing 
empirical formulations and experimental data from the 
literature. 

FE MODELLING

The compressive structural behaviour of a cracked plate 
is modelled with the use of the nonlinear finite element 
method (FEM), considering both geometrical and material 
nonlinearities. The implicit static solver (Newton–Raphson 
iterative procedure) is used, employing the commercial 
software ANSYS [25]. The material is modelled as bilinear 
with hardening, and in the following the material properties 
of normal strength steel are considered, such as a yield 
strength (Re) of 235 MPa, Young’s modulus (E) of 206 GPa 
and hardening stiffness (Eh) of 430 MPa. This type of steel is 
commonly used in shipbuilding, and the material properties 
are considered as required by Classification Societies Rules, 
such as Common Structural Rules for Bulk Carriers and 
Oil Tankers [26]. The plate was modelled with the use of 
SHELL181 elements, and the contact between the edges was 
modelled with the use of CONTAC52 elements.

The initial imperfections are modelled considering one 
half-sine wave as suggested by Smith [27] with an average 
level of 0.1β2t, where β is the plate slenderness ratio, defined as:

  (1)

where w is the plate width, and t is the plate thickness.
At the beginning of the analysis, the optimum mesh 

density needs to be established. In this order, the element 
size convergence studies are performed considering the initial 
parameters of the analysis, as presented in Table 1. At this 
stage, the drilling holes are not considered, and the central 
transverse crack is taken into account. The gap between 
cracked edges is 2 mm, and the cracked tips are modelled 
as circular ones.
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A typical plate being a part of the ship hull structure is 
spanned between longitudinal stiffeners and transverse girders. 
Based on that, the unloaded edges can be considered as simply 
supported. However, in the case of the transverse edges of the 
plate, since these are supported by very rigid girders, their 
behaviour can be assumed as something between simply 
supported and clamped conditions. In this study, the clamped 
boundary conditions are considered on the loaded edges. 

To simulate the strain distribution appropriately around 
crack tips, the element size of 0.5 mm was found to be the 
right solution. The additional transition area around the crack 
is distinguished to provide the proper mesh distribution. The 
element size along the cracked edges is considered as 3 mm to 
avoid an excessive aspect ratio of the elements in that region. 
An example of an element mesh distribution around the crack 
tip is presented in Fig. 1.

The results of the mesh convergence studies are presented in 
Fig. 2. The normalised ultimate capacity of the plate is shown 
in the vertical axis, which is the ratio between the ultimate 
stress in the plate and the yield stress of the considered 
material. It can be seen that, with the mesh refinement, the 
ultimate strength tends to arrive at the actual value. Based 
on these results, the 20 mm element size is chosen for further 
analyses, as it provides both accurate results and quite low  
computation times.

The plate FE model of the considered element size of 20 mm 
and initial analysis parameters from Table 1 are presented 
in Fig. 3, where the mesh distribution around the crack edge 
is also visible. In Fig. 4, the von Mises stress distribution 
together with the deflection shape of the considered model 
are presented. As can be seen, the stress concentration around 
crack tips is significant. Additionally, in the crack position, 
the deflections are very high, leading to different shapes of 
plate and levels of deflections compared to the intact plate.

Welding-induced residual stresses may also reduce the 
plate strength, and are often taken into account [28]. However, 
based on different studies, it is evident that after multiple 
cycles of loading the residual stresses are significantly reduced, 
which is called a shakedown effect [29]. Thus, when the crack 
initiates and starts to propagate, the influence of residual 
stresses is already released. For that reason, the residual 
stresses are not considered in this study, which may lead to 
an overestimation of the plate strength.

Fig. 1. The mesh distribution around crack region

Fig. 2. Mesh convergence

Fig. 3. FE model of the cracked plate

Fig. 4. Von Mises stress distribution [Pa] (top)  
and total deflections [m] (bottom) of plate

Tab. 1. Initial parameters of the analysis

Parameter Symbol Value Unit

Plate length l 1.5 m

Plate width w 0.6 m

Plate thickness t 10.5 mm

Crack length CL 0.15 m

Crack orientation α 0 degrees
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VALIDATION OF INTACT PLATE MODEL

To validate the FE model, the results of intact plate 
calculations are compared with the experimental investigations 
of [30], where plates with different aspect ratios and slenderness 
ratios were investigated. The material properties considered in 
that experiment were based on tested coupons, and are equal to 
E = 206 GPa, Re = 290 MPa. For the boundary conditions, all 
edges were simply supported. The level of initial imperfections 
was not studied, so in the FE model, the mean initial 
imperfections are considered, as mentioned in the previous 
section. The plate dimensions and results for both numerical 
and experimental results are presented in Table 2. A total of 
9 specimens were considered, with the same plate width of 
400 mm. Additionally, the results were compared with the 
formula of Faulkner [31], where the classical formulation for the 
critical buckling stress of an infinitely long thin elastic plate was 
extended in terms of the ultimate strength and considering the 
mean level of the initial imperfections. The ultimate strength, 
in that case, is a function of the plate slenderness ratio and 
yield strength: 

As can be seen, the deviations between the numerical and 
experimental results are minimal, and this can be the result 
of the non-ideal behaviour of the boundary conditions during 
the experiment and unknown values of initial imperfections. 
Additionally, the mechanical properties considered in the FE 
model are the mean value, whereas, in real conditions, they are 
subject to uncertainties. However, it can be seen that Faulkner’s 
simplified formulation underestimates the ultimate strength.

Based on that study, one can conclude that the FE model 
can predict the behaviour of a real plate accurately.

INITIAL SENSITIVITY ANALYSIS

Based on the literature review, it is evident that the plate 
aspect ratio, plate slenderness, crack length, initial imperfections 
level and crack orientation are undoubtedly the most important 

governing factors on the ultimate strength. However, in the case 
of the crack position, the conclusions are divergent. Additionally, 
the influence of the presence of drilling holes has not been 
studied previously. Considering these three parameters related 
to the longitudinal and transverse position of the crack and 
the drilling holes diameter, an OFAT analysis is performed 
to determine their importance. The rest of the parameters 
considered here are presented in Table 1, and the variable ranges 
are given in Table 3.

The plate with 20  mm drilling holes is presented in 
Fig. 5. The holes are modelled in such a way that they are 
not extending the length of the crack. The considered crack 
positions are presented in Fig. 6.

The results of the sensitivity analysis are presented in Fig. 7. 
As can be seen, the drilling holes have almost no influence 
on the ultimate strength. Nevertheless, a bigger drilling hole 
presents a lower stress concentration level. This will have 
a significant influence in the case of fatigue strength. In the 
case of the crack position, some influence is visible. In the case 
of the transverse position, the ultimate strength is higher for 
the middle crack location compared to the side crack position. 
In the case of the longitudinal position, the capacity is higher 
for a crack located near the loaded edge. It may be observed 
that the relations are not linear, and for the mean positions 
of the crack, the results do not deviate much from the results 
of the middle crack position. The differences between the 
maximum and minimum values are around 6%.

Fig. 5. FE model of the cracked plate with drilling holes

Fig. 6. Considered crack positions

Tab. 2. Results of intact plate validation

No Length 
[mm]

t  
[mm]

Ultimate stress [MPa] Difference 
between 
FEM and 
Exp. [%]Exp. [30] FEM

Faulkner 
formula 

[31]

1 800 4 194 187 134 3.6

2 1200 4 186 173 134 7.0

3 1600 4 165 157 134 4.8

4 800 6 259 227 186 12.4

5 1200 6 216 225 186 4.2

6 1600 6 216 222 186 2.8

7 800 8 276 265 227 4.0

8 1200 8 258 266 227 3.1

9 1600 8 260 266 227 2.3

Tab. 3. Parameters for sensitivity analysis

Parameter Symbol Min Mean Max Unit

Longitudinal crack position b/l 0.15 0.33 0.5 –

Transverse crack position a/w 0.15 0.33 0.5 –

Drilling hole diameter d 2 11 20 mm



POLISH MARITIME RESEARCH, No 3/2020 113

Apart from some significance of the crack position, this 
effect will not be analysed further. The influence seems to be 
much less compared to other governing variables, which can 
be concluded also from the previously mentioned studies.

DOE MODEL

Having established that five variables are the most 
influential ones, the proper engineering design experimental 
plan needs to be chosen. A full factorial analysis (2k) seems to 
be an excellent option to analyse the design space and provide 
information about the interaction between effects [32]. In 
DoE, the factors considered are referred to with letters from 
the alphabet. The factors with the minimum and maximum 
values are presented in Table 4.

The plate aspect ratio is considered between 1 to 4. In 
the case of the slenderness ratio, the range is based on the 
statistical data [33]. The typical values of that parameter 
in the case of ship structures are between 1.4 and 2.5. The 
corresponding thickness values for the slenderness ratios from 
Table 3 are 15 mm and 8 mm, respectively. In the case of the 
crack length, the maximum length corresponds to 40% of the 
plate width. The crack length cannot be too long because it will 
not be possible to stop its propagation [7]. Thus, 40% of the 
plate width is considered as a critical crack length. In the case 
of the crack orientation, 0 degrees corresponds to a transverse 
crack, while 90 degrees corresponds to a longitudinal crack. 
The level of the initial imperfections is estimated by w = w0β

2t 
where the range of w0 is based on the statistical analysis that 
may be found in [27].

The output of the analysis is the normalised ultimate stress. 
Each combination of factors considering either their minimum 
or maximum values is considered in the full factorial analysis. 
This leads to a 2k number of cases, where k is the number of 
factors. In this case, five factors are taken into account, so 
25 = 32 cases are computed. The analysed points are only those 
at the extreme values of the variable range, so linear behaviour 
is assumed in the region between the observations. The upper 
limit of the variable is considered as +1, whereas the lower 
limit of the variable has the value of –1. Having designed a test 
matrix, the FE simulations are carried out, and the values of 
output normalised ultimate stress are presented in Table 5.

Fig. 7. Sensitivity analysis results

Tab. 4. Factors considered in DoE

Tab. 5. Full factorial test matrix with normalised ultimate stress

Factor Symbol Min Max Unit

Plate aspect ratio (l/w) A 1 4 –

Plate slenderness ratio (β) B 1.351 2.533 –

Crack length/ width (CL/w) C 0.1 0.4 –

Crack orientation (α) D 0 90 o

Level of initial 
imperfections (w0)

E 0.05 0.3 –

Observation 
number A B C D E

Normalised 
ultimate 
stress [-]

1 -1 -1 -1 -1 -1 0.978

2 -1 -1 -1 -1 1 0.809

3 -1 -1 -1 1 -1 1.022

4 -1 -1 -1 1 1 0.832

5 -1 -1 1 -1 -1 0.740

6 -1 -1 1 -1 1 0.652

7 -1 -1 1 1 -1 0.996

8 -1 -1 1 1 1 0.814

9 -1 1 -1 -1 -1 0.700

10 -1 1 -1 -1 1 0.617

11 -1 1 -1 1 -1 0.720

12 -1 1 -1 1 1 0.624

13 -1 1 1 -1 -1 0.588

14 -1 1 1 -1 1 0.538

15 -1 1 1 1 -1 0.687

16 -1 1 1 1 1 0.588

17 1 -1 -1 -1 -1 0.996

18 1 -1 -1 -1 1 0.952

19 1 -1 -1 1 -1 1.068

20 1 -1 -1 1 1 1.007

21 1 -1 1 -1 -1 0.708

22 1 -1 1 -1 1 0.693

23 1 -1 1 1 -1 1.017

24 1 -1 1 1 1 0.985

25 1 1 -1 -1 -1 0.776

26 1 1 -1 -1 1 0.894

27 1 1 -1 1 -1 0.783

28 1 1 -1 1 1 0.888

29 1 1 1 -1 -1 0.612

30 1 1 1 -1 1 0.674

31 1 1 1 1 -1 0.716

32 1 1 1 1 1 0.887
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Based on the results from Table 4, further statistical 
analysis is carried out. First, the effect of each factor and 
interaction is evaluated to analyse whether it is significant 
or not by calculating the average responses:

  (2)

where Response+ is the response where either the factor 
or the multiplication of factors is positive, and Response– 
is the response to the negative value of the factor or their 
multiplication. Accordingly, n+ is the number of cases for 
positive responses and n– is the number of cases for negative 
responses. In the presented study, n+ = n– = 16.

In this way, all the effect identification factors can be 
established. There are five main effects (A, B, C, D, E) and 
26 interaction effects (AB, AC, AD, AE, BC, BD, BE, CD, 
CE, DE, ABC, ABD, ABE, ACD, ACE, ADE, BCD, BCE, 
BDE, CDE, ABCD, ABCE, ABDE, ACDE, BCDE, ABCDE), 
so the total number of effects is 31. The higher the effect 
identification factor, the more influential the response. 

To evaluate the significant effects, several methodologies 
may be used. The first of them is based on the statistics that 
are commonly used in the DoE methodology. The cumulative 
probability value is calculated for the sorted effects and 
plotted at a half-normal plot [34], as presented in Fig. 8. 
The significant effects are those that diverge from the dashed 
line, which represents the probability of observation noise. 
That means that all effects that are lying on that line are 
stochastically originated. The effects that deviate from the 
dashed line are B, C, A, D, CD, AE, BE, DE, E, and AB. 

Another possible way is to perform the t-test for each 
effect (to find whether the difference between the population 
means is significant or not). In this way, the t-values are 
used to measure the size of the difference between means 
concerning variation in the data. The t-value for each effect 
is calculated as follows:

  (3)

where MSRes is the mean of the sum of squares of the residuals 
(insignificant) effects, equal to:

  (4)

  (5)

where DOF is the number of degrees of freedom, and is equal to 
the number of insignificant effects, and N is the total number of 
observations (equal to 32 in this case). The DOF in the present 
study is 21. MSRes is calculated, and it is 0.0316. 

Based on that, the t-values for the analysed effects are shown 
in Table 5. To quantify whether the effect is significant or not, 
the critical t–value is calculated, which is equal to a two-tailed 
t–value for a 0.05-probability and the given value of the degrees 
of freedom. In this case, the critical t–value is 2.074. All effects 
with t-values higher than the critical one can be considered 
as important. To distinguish that, the Pareto chart is plotted, 
as shown in Fig. 9. The results of this analysis are in line with 
the half-normal plot shown in Fig. 8.

Based on the importance analysis, the significant and 
insignificant effects are distinguished, and the significant 
effects are shown in Table 6. The effects are ranked from the 
most important one to the least important. 

Fig. 8. Half-normal probability plot for effects

Fig. 9. Pareto chart as a function of the importance of effects

Tab. 6. Effect ranking

Rank Effects Impact
[-]

t-value 
[-]

1 B (plate slenderness ratio) 0.1861 13.56

2 C (crack length) 0.1107 8.07

3 A (plate aspect ratio) 0.1094 7.97

4 D (crack orientation) 0.1067 7.77

5 CD 0.0789 5.75

6 AE 0.0788 5.74

7 BE 0.0568 4.14

8 BD 0.0449 3.27

9 E 0.0408 2.97

10 AB 0.0366 2.66
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As can be seen, ten effects from the overall number of 31 
were found to be significant. The essential factor is the plate 
slenderness ratio, which is known as a parameter that has the 
most impact on the ultimate strength in general. The three 
next factors (crack length, crack orientation, and plate aspect 
ratio) have a similar impact on the ultimate stress. In general, 
five main effects and five interaction effects are found to be 
influential. Additionally, in the case of the interaction effects, 
only interactions consisting of two factors are considered.

From all the interaction factors, the most important 
one is the interaction between the crack length and crack 
orientation. This is obvious because, for a  long crack, 
the structural capacity is severely reduced where it is 
a transversely oriented crack and slightly reduced when it 
is a longitudinally oriented crack. Similar observations can be 
found in [8, 22]. What is interesting is that the impact of the 
initial imperfections level is smaller itself in comparison to 
its interaction with other factors. The two interaction effects 
concerning the initial imperfections are influential, with the 
plate aspect ratio and plate slenderness ratio due to their 
mutual magnification effect. The interaction between the 
plate slenderness ratio and crack orientation is also essential. 
In the case of slender plates, for transversely oriented cracks, 
the reduction of the structural capacity is not very severe in 
comparison to stockier plates. 

Based on the analysis of the effects, the Response Surface 
[35] can be established. Since the preliminary plan was 
based on the Full Factorial Design and considering the main 
effects and interactions of two factors, the function will take 
a general form of:

  (6)

where xi corresponds to the model variables and the parameters 
Bi and Bij correspond to linear coefficients, and are equal to half 
of the considered effect values. It needs to be noted that, in this 
case, the coefficients may be positive or negative, depending 
on the effect sign. In the importance analysis, the absolute 
values of the effects were taken into account. B0 is calculated 
as a mean value from all observations.

One can see that, in the DoE analysis, the variables xi were 
in the range between –1 and 1. However, as can be seen in 
Table 3, the range of the real variables is different. For that 
reason, the variables need to be normalised, and their values 
are estimated to:

  (7)

  (8)

  (9)

  (10)

  (11)

The parameters of the response surface are B0 = 0.7988,  
B1 = 0.05472, B2 = –0.09303, B3 = –0.05534, B4 = 0.05334, 
B5 = –0.02041, B12 = 0.01828, B15 = 0.03941, B24 = –0.02247, 
B25 = 0.02841, B34 = 0.03947.

The final response surface takes the following form:

 = 0.7988 + 0.05472x1 – 0.09303x2 – 

– 0.05534x3 + 0.05334x4 – 0.02041x5 + 

 + 0.01828x1x2 + 0.03941x1x5 – 0.02247x2x4 + 

+ 0.02841x2x5 + 0.03947x3x4     (12)

The response surface gives the estimation of the normalised 
ultimate strength. As mentioned previously, a  linear 
relationship in the factors range is assumed here, which can 
be different, considering the FE analysis. To get a higher level 
of estimation, a Central Composite Design can be considered. 
In this type of design, additional central and axial points are 
considered, and the total number of observations is equal to 
2k + 2k + 1. Based on the results of this analysis, one can obtain 
the polynomial response surface, which is more advanced 
compared to the linear one. To avoid the more complex 
polynomial response surface, the formula from Eq. (12) is 
verified for the central and axial design points.

To expand the Full Factorial Design into a  Central 
Composite Design, additionally 2k + 1 axial and central points 
need to be calculated. In the presented study, the number of 
additional points is 11. For these points, both exact FE results 
and estimations from Eq. (12) are presented in Table 7.

The difference between the exact FE solution and the 
estimation from Eq. (12) is presented in Fig. 10. One can see 
that for both the FFD points and the central and axial points, 
the differences are not very significant. The mean error of 
the estimation for the FFD points is about 3.6%, whereas for 
the central and axial points it is about 4.8%. The correlation 

Tab. 7. Factorial matrix for additional design points

Observation 
number A B C D E

Normalised ultimate 
stress [-]

FEM Eq. (12)

33 0 0 0 0 0 0.830 0.801

34 -1 0 0 0 0 0.714 0.746

35 1 0 0 0 0 0.860 0.855

36 0 -1 0 0 0 0.875 0.892

37 0 1 0 0 0 0.823 0.706

38 0 0 -1 0 0 0.917 0.856

39 0 0 1 0 0 0.747 0.745

40 0 0 0 -1 0 0.789 0.747

41 0 0 0 1 0 0.934 0.854

42 0 0 0 0 -1 0.830 0.822

43 0 0 0 0 1 0.830 0.780
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factor of the linear regression is equal to 0.956. This leads 
to the conclusion that the response surface from Eq. (12) 
also predicts the ultimate strength very well for axial and 
central points. Nevertheless, the derivation of the polynomial 
response surface can reduce the estimation error slightly.

Based on the presented results, the simple empirical 
formulation in predicting the ultimate strength of cracked 
plates considering five variables is established. Additionally, 
the impact of different factors and their interactions is 
established. It seems that 32 observations are sufficient even 
in the case of a physical experiment.

COMPARISON WITH OTHER EMPIRICAL 
FORMULATIONS

A comparative analysis is carried out to investigate the 
differences between the proposed formulation and other 
existing formulations as proposed by Paik et al. [7] and 
Babazadeh and Khedmati [21].

The formula presented in [7] seems to be the most 
conservative one, which means that all estimates based on 
it are higher than expected. Firstly, the ultimate strength of 
the intact plate is calculated based on the formula of Paik et 
al. as a function of the plate slenderness ratio [36]:

  (13)

Then, based on the formula from [7], the capacity of 
a cracked plate is estimated as:

  (14)

where Ac is a reduced plate cross-sectional area due to the 
presence of a crack and A0 is the cross-sectional area of the 
intact plate.

The second formula as proposed in [21] takes into account 
the plate slenderness ratio, plate aspect ratio, and crack length. 
The formula was derived for transversely oriented cracks 
only. For that reason, in the case of longitudinally oriented 
cracks, the crack length is taken as equal to 0. In the case of 
inclined cracks, the crack length is calculated as a projection 
of the crack in the transverse direction. The formula considers 
the medium level of the initial imperfections. The ultimate 
strength of the intact plate is calculated as:

  (15)

Then, the ultimate strength of a cracked plate is calculated 
based on:

  (16)

where CL is the crack length.
Comparisons between the proposed formula in [7] and 

other empirical formulas are presented in Figs. 11 and 12. 
The straight line shows the situation when the estimations 
from both formulations are equal to each other, whereas 
particular points are the values of the ultimate strength for 
the specified values of the design variables. When the selected 
point is above that line, it means that the estimation from 
the proposed formula is less conservative compared to the 
other formulation. In the case of Fig. 11, it is visible that 
the estimation is very conservative. For almost all cases, 
the ultimate strength is higher based on the formulation 
developed in the current study. The mean difference between 
the two formulations is about 27%.

In the case of the comparison presented in Fig. 12, it can 
be seen that the deviations are significantly less between 
the formula developed in the current study and the one 
proposed in [21]. In general, the formulation from Eq. (12) 
seems to be slightly less conservative compared to Babazadeh 
and Khedmati’s [21] formula. The mean difference between 
the two formulations is about 12%. The differences may 
originate from various sources, such as differences in the 

Fig. 10. Comparison between response surface estimation and exact solution

Fig. 11. Formula developed from the current study vs one proposed in [7]
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boundary conditions. Additionally, in the case of the second 
formulation, only the mean level of the initial imperfections 
is considered.

SIMPLE FORMULATIONS FOR INTACT 
AND REPAIRED PLATE

The objective of this work was to perform a structural 
reliability assessment based on the experimentally and 
numerically estimated ultimate strength.

To determine the difference in capacity reduction during 
the entire life-cycle of the plate, two additional experiments 
were carried out, following the same methodology as 
presented in the section on the DoE model above. The first 
experiment is related to the intact plate, and the second is 
related to the plate after repair. In both cases, the FFD analysis 
is carried out. 

INTACT PLATE

In the case of the intact plate, only three variables need 
to be considered, which are the plate aspect ratio, plate 
slenderness ratio, and level of initial imperfections. This led 
to 23 = 8 cases which need to be calculated. The ranges of the 
variables are the same as presented in Table 4. The results of 
the calculations with the DoE matrix are presented in Table 8.

Further, the importance analysis is performed, and the 
following factors and interactions are found to be influential: 
A, B, E, AE, BE. It can be seen that the same effects were 
found in the case of a cracked plate. Based on the analysis 
results, a simple formulation is derived. The variables x1, x2 
and x5 will be the same as presented in Eqs. (7), (8), and (11), 
respectively. The estimated ultimate capacity for the intact 
plate is equal to:

intact = 0.875 + 0.06765x1 – 0.1206x2– 0.03202x5+

+ 0.04163x1x5 + 0.03598x2x5    (17)

Compared to the exact FE results, the mean value of the 
estimation concerning Eq. (17) is equal to 1.5%. 

REPAIRED PLATE

The repair of crack damage is usually done by butt welding 
of the cracked edges. Sometimes an additional doubler plate 
is considered. The welding could cause additional residual 
stresses in the region around the crack, which may have an 
impact on the plate capacity reduction.

In the presented study, the simplified distribution of 
residual stresses acting in the longitudinal direction of the 
crack is considered. As presented in [37], in the weld zone, 
there are existing tensile stresses with a value equal to the 
yield stress. The total width of the heat-affected zone is taken 
as three times the plate thickness. In the region outside the 
welding zone, there are existing compressive stresses of about 
20% of the yield stress. The width of that region is calculated to 
satisfy the internal force equilibrium in the plate and is equal 
to 7.5 times the plate thickness on one side of the crack. The 
resulting typical zones for the inclined crack are presented 
in Fig. 13. The residual stresses are applied as the initially 
induced stresses in the FE model.

Similarly to the cracked plate, the five variables with 
their ranges, as presented in Table 4, are considered in the 
experiment. The analysis results, together with the factorial 
test matrix, are presented in Table 9.

Fig. 12. Formula developed from the current study vs one proposed in [21]

Fig. 13. Welding-induced stress zones after crack welding

Tab. 8. Full factorial test matrix for intact plate case

Observation 
number A B C Normalised 

ultimate stress [-]

1 -1 -1 -1 1.034

2 -1 -1 1 0.839

3 -1 1 -1 0.728

4 -1 1 1 0.628

5 1 -1 -1 1.093

6 1 -1 1 1.016

7 1 1 -1 0.773

8 1 1 1 0.888
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As a result of the importance analysis, the factors A, B, 
E, AE, BE are found to be the most significant. This leads 
to the conclusion that the crack parameters and associated 
residual stresses do not have a significant impact on the 
structural capacity of the plate compared to the intact one. 
And only a slight reduction of 1–2% is observed in the case 
of a 90-degree crack orientation concerning the direction of 
the applied compressive load. The estimated ultimate strength 
for the repaired plate is defined as:

repaired = 0.8628 + 0.06648x1 – 0.1093x2 –

– 0.03032x5+ 0.04153x1x5 + 0.03214x2x5  (18)

CONCLUSIONS

The presented study analysed the ultimate strength of 
cracked plates subjected to compressive loads considering 
five governing parameters related to the plate aspect ratio, 
plate slenderness ratio, crack length and orientation, and the 
level of initial imperfections. Based on the initial sensitivity 
analysis, it was found that the existence of drilling holes 
and the crack position do not influence the plate capacity 
significantly, and they were not considered in the present 
analysis. The DoE techniques were used considering the Full 
Factorial Design. When incorporating the DoE techniques 
into the FE analysis, one can perform the sensitivity 
analysis in a quite straightforward way. Compared to the 
OFAT analysis, which was used in previous studies, the 
interaction between factors is established, and the number of 
observations needed in the analysis is significantly reduced. 
Additionally, this allows more variables to be considered 
with a similar computational effort. 

In terms of the ultimate strength of cracked plates, the 
plate slenderness ratio was found to be the most influential 
factor. The plate aspect ratio, crack length, and orientation 
have a similar impact. Four interaction effects were also 
found. 

As a result of the analysis, a linear response surface was 
found, which allows for a fast estimation of the ultimate 
strength of cracked plates. The simplified formulation 
was found to deviate slightly from the exact results. 
The developed formulation is a  fast and practical tool 
for estimating the ultimate strength of cracked plates 
and can be successfully used in the reliability analysis. 
Additionally, the simplified formulations for estimation 
of the ultimate strength of intact and repaired plates 
subjected to compressive loads were developed. These three 
formulations cover the entire life-cycle of the plate element 
in terms of possible crack damage.

The comparison between the intact and cracked plates 
reveals that, for the most critical case of a transverse crack, 
the reduction of the ultimate strength reaches the level of 
35%. In the case of repaired plates, their ultimate strength is 
only slightly reduced compared to intact plates.
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Tab. 9. Full factorial test matrix with normalised ultimate stress

Observation 
number A B C D E

Normalised 
ultimate 
stress [-]

1 -1 -1 -1 -1 -1 1.024

2 -1 -1 -1 -1 1 0.833

3 -1 -1 -1 1 -1 1.009

4 -1 -1 -1 1 1 0.824

5 -1 -1 1 -1 -1 1.015

6 -1 -1 1 -1 1 0.817

7 -1 -1 1 1 -1 1.012

8 -1 -1 1 1 1 0.826

9 -1 1 -1 -1 -1 0.724

10 -1 1 -1 -1 1 0.627

11 -1 1 -1 1 -1 0.723

12 -1 1 -1 1 1 0.625

13 -1 1 1 -1 -1 0.715

14 -1 1 1 -1 1 0.619

15 -1 1 1 1 -1 0.723

16 -1 1 1 1 1 0.624

17 1 -1 -1 -1 -1 1.070

18 1 -1 -1 -1 1 1.001

19 1 -1 -1 1 -1 1.051

20 1 -1 -1 1 1 0.995

21 1 -1 1 -1 -1 1.054

22 1 -1 1 -1 1 0.993

23 1 -1 1 1 -1 1.041

24 1 -1 1 1 1 0.987

25 1 1 -1 -1 -1 0.785

26 1 1 -1 -1 1 0.888

27 1 1 -1 1 -1 0.786

28 1 1 -1 1 1 0.888

29 1 1 1 -1 -1 0.775

30 1 1 1 -1 1 0.887

31 1 1 1 1 -1 0.783

32 1 1 1 1 1 0.886
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