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Abstract

The present work proposes several pre-injection patterns to reduce nitrogen oxides in the Wärtsilä 6L 46 marine 
engine. A numerical model was carried out to characterise the emissions and consumption of the engine. Several 
pre-injection quantities, durations, and starting instants were analysed. It was found that oxides of nitrogen can be 
noticeably reduced but at the expense of increasing consumption as well as other emissions such as carbon monoxide 
and hydrocarbons. According to this, a multiple-criteria decision-making (MCDM) model was established to select the 
most appropriate parameters. Besides, an artificial neural network (ANN) was developed to complement the results 
and analyse a huge quantity of alternatives. This hybrid MCDM-ANN methodology proposed in the present work 
constitutes a useful tool to design new marine engines.
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introduction

The maritime industry is currently facing a crucial time 
regarding emission control, and engines have to deal with 
ever increasing legislative emission requirements. Special 
attention has been paid to NOx emissions from marine engines 
mainly due to legislation imposed by the IMO (International 
Maritime Organization) through the MARPOL convention. 
The International Convention for the Prevention of Pollution 
from Ships (MARPOL) is the main international convention 
covering prevention of pollution of the marine environment 
by ships. It was adopted on 2nd November 1973 and has been 
updated through the years. Regarding air pollution, limits 
are established in annex VI “Prevention of air pollution from 
ships”. Several works have been published to characterise NOx 
emissions from marine engines [1-4], and both primary and 

secondary NOx reduction measures have been developed in 
recent years. Primary measures focus on reducing NOx during 
the combustion phase, while secondary measures reduce NOx 
in the exhaust gas through after-treatment devices. Both 
primary and secondary measures were summarised in recent 
reviews about emission reduction technologies for marine 
engines [5-7].

Engine experiments are usually expensive and time-
consuming. In order to solve this issue, artificial neural 
networks (ANNs) have demonstrated the ability to reduce the 
experimentation cost and time. ANNs are computing systems 
inspired by the biological neural networks that constitute 
human brains. Such systems progressively improve their 
performance by a process called learning. They are able to 
learn complex non-linear and multivariable relationships 
between parameters and model nonlinear problems. The 
objective is to create a predictive model for the objects or 
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phenomena under investigation. ANNs have demonstrated 
great progress in recent years, and have been applied in many 
fields such as engineering, medical diagnosis, economics, etc. 
Regarding internal combustion engines, ANNs have been 
employed to predict different characteristics like performance, 
combustion, emissions, etc. in both compression-ignition 
and spark ignition engines [8]. Regarding compression-
ignition engines, one can refer to the work of Kowalski [9], 
who characterised NOx and fuel consumption from 15 and 
16 inputs, respectively. Celik and Arcaklioglu [10] predicted 
the consumption, fuel‒air equivalence ratio, and EGT, using as 
inputs the engine power, engine speed, and water temperature. 
Siami-Irdemoosa and Dindarloo [11] predicted the fuel 
consumption using the loading time, idle time to load, empty 
travel time, payload, idled empty time, and loaded travel time 
as inputs. Bietresato et al. [12] predicted the consumption 
and torque using the exhaust gas temperature and motor 
oil temperature as inputs. Goudarzi et al. [13] predicted the 
exhaust valve temperature using two temperatures at different 
points of the seat. Arcaklioğlu and Çelıkten [14] predicted 
the power, consumption and emissions using the injection 
pressure, throttle position, and speed as inputs. Nikzadfar and 
Shamekhi [15] used 10 engine inputs to predict consumption, 
torque, NOx, and soot. Besides these works about diesel 
engines, other analysis can be found in the literature applied 
to compression-ignition engines using alternative fuels such 
as biodiesel [16-18], butanol [19], bioethanol [20], ethanol [21], 
different dual-fuel configurations [22-29], etc.

Primary measures that are commonly employed to reduce 
NOx in engines involve multiple evaluation objectives which 
conflict with each other, i.e., the improvement on one objective 
such as NOx reduction sacrifices others such as emissions and/
or consumption. Taking this into account, some researchers 
have developed multi-criteria decision-making (MCDM) 
models to complement ANN analyses. Prediction studies 
focused on ANN used together with MCDM can be found 
in some studies in the literature, applied to different aspects 
such as supplier selection for industries, failure estimations, 
machine selection, maintenance, etc. In these analyses, an 
MCDM is formulated, and ANNs are used to learn the 
relation among the criteria and alternatives and rank the 
alternatives. In engine engineering, hybrid MCDM-ANN 
methods can be found in the work of Tasdemir et al. [30], who 
analysed hydrocarbon emission, consumption, torque, and 
power using intake valve advancement and speed as inputs; 
Martínez-Morales et al. [31], who analysed NOx emissions 
from the injection timing, torque, intake pressure, speed, 
ignition point, and throttle data; Etghani et al. [32], who 
developed a model to maximise the power and minimise 
the consumption and CO, CO2, NOx, and PM; Majumber 
et al. [33], who optimised the performance and emission 
parameters in a diesel engine using hydrogen in dual-fuel 
mode, etc.

The present work proposes a hybrid MCDM-ANN model to 
analyse the pre-injection pattern in the Wärtsilä 6L 46 marine 
engine. The data were obtained through a CFD (computational 
fluid dynamics) model previously validated with experimental 

data. A pre-injection system was proposed to reduce NOx 
emissions and the developed model was developed to analyse 
the most appropriate injection pattern. The effects of the 
pre-injection starting instant (S), quantity (Q), and duration 
(D) were studied. 

METHODOLOGY

This section first describes the engine analysed and the 
corresponding CFD analysis employed to obtain the data 
samples necessary to train, learn and test the ANN. After 
that, the MCDM and ANN methodologies are addressed.

Engine analysed and CFD analysis 

As indicated above, the present work analyses the 
commercial marine engine Wärtsilä 6L 46. This is a four-
stroke engine with 6 in-line cylinders, and each cylinder has 
2 inlet and 2 exhaust valves. The CFD analysis and validation 
with experimental results was developed in previous works 
[22-27]. The simulations were realised using the open software 
OpenFOAM. Turbulence was treated through the k-ε model. 
The fuel heat-up and evaporation was treated through the 
Dukowicz [34] model and the fuel droplet breakup through 
the Kelvin‒Helmholtz and Rayleigh‒Taylor [35] model. As 
a combustion model, Ra and Reitz’s kinetic scheme [36], 
based on 131 reactions and 41 species, was employed. As 
the NOx formation model, Yang et al.’s kinetic scheme [37], 
based on 43 reactions and 20 species, was employed. As the 
NOx reduction model, Miller and Glarborg’s kinetic scheme 
[38], based on 131 reactions and 24 species, was employed. 

A comparison between the numerical and experimental 
results is illustrated in Figs. 1 and 2. Fig. 1 shows the 
emissions and SFC (specific fuel consumption) obtained 
numerically and experimentally at several loads, and Fig. 2 
shows the in-cylinder pressure and heat release rate obtained 
numerically and experimentally at 100% load. As can be seen, 
both figures show a reasonable correspondence between the 
numerical and experimental results.

Fig. 1. SFC and emissions at different loads
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Fig. 2. In-cylinder pressure at 100% load

Th e data obtained through this CFD model were used as 
samples to train, validate and test the ANN. 180 cases were 
characterised through CFD using pre-injection quantities 
from 5 to 30%, starting instants from -23º to -18º CA ATDC 
(crank angle aft er top dead centre), and durations from 1 to 
5º CA. All of these simulations were realised at 100% load and 
500 rpm. Some of the results obtained for these 180 cases are 
illustrated in Figs. 3-6. Th ese fi gures show the consumption, 
NOx, CO and HC against the pre-injection quantity and 
starting angle using 1º injection duration, respectively. As 
can be seen in these fi gures, the NOx emissions are reduced 
with increments of the pre-injection quantity and advances 
of the pre-injection starting instant. It is well known that 
NOx is formed mainly due to the high temperatures reached 
during the combustion process. If these temperatures are 
reduced, the NOx emissions are reduced too. Unfortunately, 
low combustion temperatures lead to lower power and thus 
higher consumption. Besides, lower combustion temperatures 
promote incomplete combustion, which is the main source 
of CO and HC emissions. According to these results, it can 
be seen that SFC, NOx, CO and HC constitute confl icting 
criteria since none of the measures proposed in the present 
work are able to reduce all of them together.

Fig. 3. Consumption against the pre-injection quantity and starting instant. 
1º pre-injection duration

Fig. 4. NOx emissions against the pre-injection quantity and starting instant. 
1º pre-injection duration

Fig. 5. CO emissions against the pre-injection quantity and starting instant. 
1º pre-injection duration

Fig. 6. HC emissions against the pre-injection quantity and starting instant. 
1º pre-injection duration
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MCDM analysis

Taking into account the 180 alternatives analysed through 
the CFD model and the four criteria considered (SFC, NOx, 
CO, and HC), a 180 × 4 data matrix can be constituted with 
180 rows and 4 columns. Each element Xij indicates the 
performance of alternative i when it is evaluated in terms of 
the decision criterion j. This matrix is highlighted in red in 
Table 1. This table also shows the pre-injection starting instant, 
quantity, and duration corresponding to each alternative.

Tab. 1. Decision matrix 

An important issue in MCDM methods consists in 
establishing the criteria weights, i.e., the degree of importance 
of each criterion. Although several objective methods can be 
found in the literature, subjective methods are recommended 
since these are directly defined by experts in the field [8, 
33]. In the present work, two main requirements were 
considered, consumption and emissions. An importance of 
20% was provided for consumption and 80% for emissions. 
Regarding emissions, the importance of NOx, CO and HC 
was also distributed equally, i.e., 33.3% for each one. To 
summarise, these values on a per-unit basis are shown in 
Table 2. Logically, each column in Table 1 sums to 1 for the 
requirements. Regarding sub-requirements, the value of the 
part of the column corresponding to SFC is 1 and the part of 
the column corresponding to emissions sums to 1 too. The 
weight of each criterion is obtained by multiplying the weight 
of the requirement by the weight of the sub-requirement, 
leading to 0.5, 0.167, 0.167, and 0.167 for SFC, NOx, CO, and 
HC, respectively. Logically, these weights also sum to 1. A 
sensitivity analysis of these criteria weights will be shown in 
the results section.

Tab. 2. Criteria weights, per unit basis 

Requirement (α) Sub-requirement (β)

SFC (0.5) SFC (1)

Emissions (0.5)
NOx (0.333)
CO (0.333)
HC (0.333)

Another important step consists in normalising the 
decision matrix. Normalisation is used to eliminate the units 

of each criterion so that all the criteria become dimensionless 
and to set the ratings of different alternatives into the same 
range. Normalisation changes the different measurable 
values into comparable similar ones. Many normalisation 
techniques are available in the literature. In the present work, 
the so- called linear max-min normalisation technique was 
employed, according to which each normalised value, Vij, 
is given by:

,max

1 ij
ij

j

X
V

X
= − (1)

The adequacy index was 
computed by the WSM (weighted 
sum method), according to which 
the adequacy index is given by Eq. 
(2). This procedure is also called 
SAW (simple additive weighting) 
and WLC (weighted linear 
combination). Taking into account 
the normalisation procedure 
applied, the most appropriate 
alternative is the one corresponding 
to the maximum AI.

1

n

i j ij
j

AI w V
=

=∑  (2)

where AI is the adequacy index, wj the weight of the j-th 
criterion, and n the number of criteria.

ANN analysis

ANNs are structures that model human intuition by 
simulating the physical process upon which intuition is based, 
i.e., the process of biological learning. In the present work 
the ANN was employed to obtain the adequacy index (AI) 
from three inputs: pre-injection starting instant, quantity, 
and duration. The software Matlab 2021b was used to develop 
the analysis. The structure of the ANN employed is shown 
in Fig. 7. As can be seen in this figure, the ANN has three 
parallel layers. The first layer, i.e., the input layer, contains 
the three independent variables: S, Q, and D. The second 
layer is the hidden layer that contains the so-called hidden 
nodes, and the third layer is the output layer, containing the 
dependent variable/s. In this problem, a single variable, AI, 
was employed. Regarding the number of hidden layers, the 
general recommendation is to employ a single layer for most 
problems [39] [40], and multi-layered structures are only 
recommended for complex problems since too many hidden 
layers may cause memorising instead of generalising. The 
number of neurons in the hidden layer was established by 
comparing ANNs with a number of hidden neurons between 
3 and 15. A low number of neurons may lead to inaccuracy 
and a high number to over-fitting. In this case, it was found 
that the ANN with 12 neurons provided the lowest error and 
thus this structure was selected.  
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Fig. 7. ANN structure employed in the present work

As mentioned previously, 180 samples were employed and 
their data were obtained from CFD. 126 of these samples 
were used for learning, 27 for testing, and 27 for validation. 
Fig. 8 shows the regression results with respect to training, 
validation, testing, and all of them. This figure shows 
a satisfactory performance since R = 0.99966, very close to 
the optimum value of 1, indicating that the ANN provides 
an appropriate prediction accuracy.  
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RESULTS AND DISCUSSION

Fig. 9 shows the most appropriate option provided by 
the hybrid ANN-MCDM model, which corresponds to 
a -22.2º pre-injection starting instant, 25.4% quantity and 
1º duration. This solution was obtained using the criteria 
weights shown in Table 2.  It is useful to perform a sensitivity 
analysis of the criteria weights. According to this, Table 3 
shows the most appropriate option under different weights 
of the consumption. In this analysis, the emissions were 
assigned equally with the remaining weight. As can be seen, 
as more importance is provided to the consumption, a lower 
pre-injection rate and more retarded starting instants are 
obtained since these effects reduce consumption. It is worth 
mentioning that some of the results obtained in Table 3 
are not recommended in practical application despite the 
significant NOx reductions obtained. A 30.5% pre-injection 
quantity is too high for an appropriate performance of the 
engine. Besides, a -23.1º starting instant is too early since 
the combustion must be produced after TDC. Regarding 
the injection duration, injections shorter than 1º were not 
analysed since some injectors are not able to provide these 
short injections.

Fig. 9. Most appropriate option according to the MCDM model alone 

Tab. 3. Most appropriate option under several criteria weights for the 
consumption according to the hybrid MCDM-ANN model

αSFC S (°) Q (%) D (°)

40 -23.1 28.3 1.5

45 -22.8 27.1 1.2

50 -22.2 25.4 1

55 -20.9 23.2 1

60 -18.5 19.8 1

CONCLUSIONS  

This paper proposes a hybrid MCDM-ANN model to select 
the most suitable pre-injection pattern in the Wärtsila 6L 
46 marine engine. The purpose is to reduce emissions and 
consumption as much as possible. The motivation comes 
from the ever stricter legislation, especially IMO MARPOL. 
The pre-injection quantity, starting instant, and duration 
were analysed. Since these measures have conflicting criteria 
on emissions and consumption, the hybrid MCDM-ANN 
developed in the present work model provides a tool to 
facilitate the selection for decision makers. The pre-injection 
quantity, starting instant, and duration were selected as input 
data for the ANN model, while the adequacy index was 
selected as the output data. The model is fast in application 
and allows the user to vary the input parameters in order to 
show their effects on the results. 

This work provides useful information for marine engine 
designers. MCDM tools are becoming necessary to select 
between conflicting criteria, and ANN allows a huge quantity 
of alternatives to be analysed. Once the ANN is trained, 
it can be used for predicting solutions, in this case the 
adequacy index of each alternative. Manufacturers can find 
in the present study an assessment tool for designing their 
engines. The proposed model is applicable for a wide variety 
of multi-attribute decision-making problems and can be used 
for future ranking or selection. Future studies will focus on 
analysing more pollutant reduction measurements and other 
marine engines. 
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