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ABSTRACT

In this paper, a robust sliding mode tracking controller with prescribed performance is developed for an underactuated 
surface vehicle (USV) with time-varying external disturbances. Firstly, to guarantee the transient and steady-
state performance of the closed-loop system, the error transformation technique is presented. Further, the design 
of the prescribed performance function implements predefined tracking performance constraints, which eliminate 
the requirement for prior knowledge about the initial errors. Then, a Lyapunov stability synthesis shows that all 
closed-loop signals remain bounded and the tracking errors remain strictly within the predefined bounds. Finally, 
simulations and a comparative study are performed to illustrate the robustness and effectiveness of the proposed robust 
sliding mode control scheme.
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INTRODUCTION

Tracking control of underactuated surface vehicles (USVs) 
has been widely used in military and civil fields such as coastal 
patrols, mine countermeasures, oceanographic sampling, 
military reconnaissance, and so on [1], [2]. In the case of 
tracking problems, trajectory tracking is more difficult than 
path following, since the control laws require the USV to 
be driven to reach and track a time-varying trajectory on 
time. The challenge comes mainly from the nonlinearity 
and underactuation of USV dynamical systems. At the same 
time, USVs inevitably suffer from uncertainties, complex 
hydrodynamics, and time-varying external disturbances such 
as wind, waves, and ocean currents [3]. Therefore, an actual 

mathematical model of a USV is hard to obtain precisely using 
current modeling methods. The other challenge, however, is 
that the number of USV control inputs is less than the degrees 
of freedom, which means that its system causes non-integral 
constraints [4].

On the one hand, it is clear that a USV is an underactuated 
system with nonholonomic constraints that cannot be 
stabilized by continuous time-invariant feedback [5]. Many 
nonlinear control works have been conducted to solve 
the tracking problem of underactuated vehicles, such as 
Lyapanov-based techniques [6], robust adaptive control 
[7], the backstepping technique [8], sliding mode control 
[9], neural networks [10], and disturbance-observer-based 
control [11]. Considering external perturbations, a full state 
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feedback control algorithm based on a backstepping scheme 
was presented to track a straight line in [8]. Reference [12] 
proposes a point-to-point navigation technique combined 
with an adaptive and backstepping method to improve 
the robustness under the model uncertainties. However, 
the  repeated differential of virtual control laws in the 
backstepping method increases the complexity of calculations. 
Moreover, due to the use of the adaptive technique and neutral 
networks, some parameters need to be adjusted online, which 
makes the computing process and parameter selection 
harder. Nevertheless, a sliding mode control structure is 
simple and provides excellent tracking performance even 
when uncertainty and bounded disturbance are acting on 
the underactuated vehicle. 

On the other hand, it is necessary to consider the prescribed 
transient and steady-state control performance in practical 
controller design. More recently, the prescribed performance 
control (PPC) method was introduced in [13]. Furthermore, 
PPC was used in the tracking control for several classes of 
nonlinear systems [14] and robots [15] and for autonomous 
underwater vehicles [16] and surface vehicles [17]. However, 
logarithmic error mapping functions used in previous studies 
have led to the potential singularity problem of the designed 
control law. For tracking control of an underactuated vehicle 
with ensured transient performance [18], a robust adaptive 
controller under environmental disturbances was put 
forward, but it only solved the path-following problem. In 
[19], a robust fault-tolerant controller was proposed to ensure 
that the tracking errors of a USV were within predefined 
performance bounds. Reference [20] investigated the 
distributed containment control of networked surface vessels, 
which achieved the prescribed transient and steady-state 
performance.  PPC is common in fully actuated nonlinear 
systems but has not been innovatively extended to the control 
of underactuated vehicles [21]. 

Motivated by the above observations, to guarantee the 
predefined performance of USVs under time-varying external 
disturbances, a robust sliding mode technology is used to 
design a control scheme. The main contributions of this article 
include the following: (1) unlike the existing literature, the 
proposed controller can guarantee that tracking errors will 
not exceed a prescribed performance bound; (2) the proposed 
method eliminates the requirement for prior knowledge about 
the initial errors.

PROBLEM FORMULATION

MATHEMATICAL MODELS

Before presenting the design procedure, mathematical 
models of the USV are described. Figure 1 shows the three-
degrees-of-freedom motions of the USV with body-fixed and 
earth-fixed frames. It should be noted that the kinematics 
and dynamics of the USV with time-varying external 

disturbances in the horizontal plane (surge, sway, and yaw) 
are as follows [22]:
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where [ ][ ] , ,Tx yη ψ ψ π π= ∈ −  is the north and east 
positions and heading of the USV in the earth-fixed frame 
and [ ]Tu v rυ = represents the surge and sway velocities 
and yaw rate in the body-fixed frame. Then, the only two 
control inputs are the surge force uτ  and the yaw moment 

rτ , and the USV model  has underactuated characteristics. 
Then, ( ), , ,wj t j u v rτ = are the vectors of time-varying external 
disturbances acting on the USV. Also, ( )1 1 uM m X= −



, ( )2 1 vM m Y= −


, ( )3 1 z rM I N= −


, u u u uD X X u= − −
, v v v vD Y Y v= − − , r r v rD N N v= − − , 12 v ua Y X= −

 

, 
13 ua X m= −



, and 23 va m Y= −


. zI  is the moment of inertia. 
, , ,jX j u v r=


 are the hydrodynamic added mass terms. jD  
comprises the linear and nonlinear hydrodynamic damping. 
m  is the mass of the USV.
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Fig. 1. Definition of reference coordinate frame of the USV trajectory tracking

Control objective: The control goal of the USV system  
is to design a robust sliding mode tracking controller with 
prescribed performance under time-varying external 
disturbances, ensuring that the system output can track the 
arbitrary smooth reference trajectory dΩ  at the corresponding 
time (refer to Figure 1). All signals in the closed-loop system 
remain bounded. 

Assumption 1: The external environment disturbances 
( ), , ,wj t j u v rτ =  are bounded by unknown constants, that 

is, max( )wj wjtτ τ≤ .
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Assumption 2:  The desi red t rajec tor y 
( ) [ )2: , 0,d t U t UΩ → ∈ ⊂ ∞  and its first order derivative 

are bounded.
Assumption 3: All the states are measurable and available 

for feedback.

PRESCRIBED PERFORMANCE

As shown in Figure 2, to guarantee the prescribed transient 
performance and ensure that the steady-state tracking error 
is bounded, the following definition is introduced first. 

Prescribed performance 
constraints

Spatial equivalence 
mapping 

homeomorphic mapping

Underactuated surface 
vehicle controller design

Constrained space

Constraint independent space

Sliding mode control

Fig. 2. Structure of prescribed performance method

Definition 1 [23]. A smooth bounded function ( )tρ ：
+ +→  can be called a performance function; if ( )tρ  is 

decreasing, ( ) ( )0 0e ρ< and ( )lim 0
t

tρ ρ∞→∞
= > .

The prescribed performance can be achieved if the 
following conditions hold:

( ) ( ) ( ), (0) 0t e t t eδρ ρ− < < ≥  (2)

( ) ( ) ( ), (0) 0t e t t eρ δρ− < < ≤ (3)

where ( )e t  is the system state error, [0,1]δ ∈  is the designed 
parameter, and [0, )t∈ ∞ . Because of the convergence 
performance in exponential form, the prescribed performance 
function in this paper is defined as:

( ) ( )0
ltt eρ ρ ρ ρ−

∞ ∞= − +  (4)

where 0ρ ρ∞> , 0l > .

To achieve the control performance (2) and (3), the 
error transformation method is employed to eliminate the 
requirement for prior knowledge about the initial errors, 
and the error transformation function is constructed as:
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1 ( )( )
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          (5)

where σ  is the transformation error, and the transformation 
function ( )S σ is strictly increasing and satisfies:
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From the definition of ( )S σ and , we can get:
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where ( )F ⋅  is the homeomorphic mapping function, and 
the derivative of ( )tσ  is:
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Remark 1. From (5) and (8), it can be seen that the bounded 
transformation error ( )tσ  can guarantee that the prescribed 
performance constraint is met. Meanwhile, the two systems 
are the homeomorphic mapping. 

DESIGN OF PRESCRIBED PERFORMANCE 
TRACKING CONTROL

In this section, a robust sliding mode tracking controller 
based on prescribed performance (robust sliding mode with 
prescribed performance – RSMPP) will be designed for the 
system (1) with time-varying external disturbances. The whole 
control architecture can be seen in Figure 3. The detailed 
design procedure is as follows:

Step 1. Tracking error transformation
Define the position and velocity error variables as:

x d

y d

e x x
e y y

−   
=   −  

(10)

e u

e v

u u
v v

α
α

−   
=   −   

(11)

where ,d dx y  and ,u vα α are the desired position and 
velocity, respectively.
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Fig. 3. The whole control architecture

Considering (1) and (10), the time derivative of the variable 
,x ye e  can be calculated as:
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Here, the design purpose is to make the position vector 
track the desired position vector with prescribed performance. 
As mentioned above in Section 2.2, the error transformation 
function is designed as:
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where 
1 1 1

x xe eρδ ρ
 
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, 
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ξ
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.

Substituting (12) into (15) yields:
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Step 2.  Design of the desired velocities 
To avoid design flaws in Remark 2 [24], the desired surge 

and sway velocities, that is, the virtual control law, are 
chosen as:
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where the choice of the controller gains 0, 0x yk k> >
 
can 

be tuned and determines how fast the tracking errors converge 
to zero so that the performance of the USV is robust against 
uncertainties.

Based on (1) and (17), the derivative of the variable ,u vα α  
is constructed by:
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Remark 2. Avoiding large tracking errors causes the virtual 
control law to exceed the maximum velocity of the USV and 
thus affects the control effect. So the virtual control law selects 
(17), not the following:
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Step 3.  Prescribed performance tracking controller design
Combined with (11), the sliding surfaces are chosen such 

that:

 1 1 0
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t
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 2 2 30
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where 1 2 3, , 0λ λ λ > . Using (1), the time derivatives of these 
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To ensure the finite-time convergence of 1L  and 2L  to zero, 
the design is as follows.

 ( )1 1 1signL K L= − (24) 

 ( )2 2 2signL K L= − (25) 

where 1 2, 0K K > .
Therefore, the robust sliding mode control law based on 

prescribed performance is:

( )( )23 1 1 1 1
1

1 signu u u ea vr D u u K L
M

τ η α λ= − + − + − − (26) 

( ) ( )12 3 2 2 2 13 2 2 3
1 1signr r v e ea uv D r K L M a ur D v v v
b b

τ η η λ λ= − + − − + − − + +Γ − −     (27) 

where 2 maxwvη τ≥ , 3 maxwrη τ≥ , 0b ≠ , and ( )3 2 13 ub M M a u α= +
. T﻿hen according to (18), we can get v urα α= Γ −  , ur fαΓ = − + 

, and
2

2 2

2

2 2

cos

sin

y y y y y y y
d y

y

x x x x x x x
d x

x

e e e
f y k

e e ex k

ρ ρ ρ σ ξ σ ξ
ψ

ρ ρ ξ

ρ ρ ρ σ ξ σ ξ
ψ

ρ ρ ξ

 + −
= + − − 
  
 + −

− + − − 
 



   





   



.

Theorem 1. Consider the USV model under time-varying 
external disturbances, which are given by , and the error 
transformation function (13). Under Assumptions 1 to 3, 
the design parameters 1 2 3 1 2, , , , , ,x yK K k k andλ λ λ δ  are 
carefully adjusted. Then the proposed controller (26) and (27) 

with the virtual control law (17) guarantees the stability of 
the USV closed-loop system. All states remain bounded and 
it can be ensured that the tracking errors remain within the 
given prescribed performance bounds for 0t∀ ≥ .

Proof: Firstly, the complete Lyapunov function is assigned:

 2 2
1 1 2

1 1
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V L L= +  (28)
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Integrating (26) and (27), one has:

   
( ) ( )

( ) [ ] ( )

1 1 1 2 2

13
2

1 1 23 1 2 13 3 12

2 3

1 1 1 2 2 13 2 12 2

( )
( ) ( )

= sign + ( ) ( )

v wv

u u wu u e r r wr

v e e

v wv r r wr

V L L L L

a ur D v t
M

L M a vr D u t u L a uM a uv D r t

v v

K L L L M a ur D v t L b a uv D r t v

τ
τ τ α λ τ τ

α λ λ

τ τ τ λ

= +

 − + 
  =  − + + − +  + + − + +    
 − + + 

− − + + −Γ + − + + +

  

  



 

  

( ) ( ) ( ) ( ) ( )
3
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= sign sign ( ) ( ) ( )
e e

wu wv wr

v

K L L K L L t t t

K L K L

λ

τ η τ η τ η

 +  
− − + − + − + −

≤ − −





(30)

where 1( ) 0wu tτ η− ≤ , 2( ) 0wv tτ η− ≤ , and 3( ) 0wr tτ η− ≤ . 
Γ  and b  are defined in (27). It is obvious from (30) that 1 0V <  
for ( ) ( )1 2, 0,0L L ≠  since 1 0K > and 2 0K > . This indicates that 
sliding surfaces in (20) and (21) can reach zero; that is, the 
tracking errors satisfy ( ) ( ), 0,0e eu v → .

Then, the following Lyapunov function candidate is chosen:

 2 2
2

1 1
2 2x yV σ σ= +  (31)

Substituting (17) into (16), the time derivative of 2V  can 
be written as follows:

 2 2
2 x x y y x x y yV k kσ σ σ σ σ σ= + = − −

   (32)

Since 0xk >  and 0yk > , it is clear from (32) that 2 0V <  
for ( ) ( ), 0,0x yσ σ ≠ . So, it can be found that both xe  and ye  
converge asymptotically to zero. 

Furthermore, consider the following Lyapunov function 
candidate:
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 2
3

1
2

V r=   (33)

The time derivative of 3V  is given by:

 [ ]3 3 12 ( )r r wrV M r a uv D r tτ τ= − + +  (34)

Knowing that 3 0M > , the condition 3 0V <  is satisfied 
when:

 12 ( ) 0r wr ra uv t D r if rτ τ+ + < >  (35)

 12 ( ) 0r wr ra uv t D r if rτ τ+ + > <  (36)

which implies the following:

 12 ( )r r wrD r a uv tτ τ> + +  (37)

Therefore, 3 0V <  if the inequality (37) is satisfied. 
Moreover, 3 0V <  implies that 3V  is a decreasing function, 
which means that r  is decreasing as well from .

Consequently, the control laws proposed in (26) and (27) 
ensure the convergence of position and velocity errors while 
the yaw motion remains bounded. In accordance with the 
above depiction, all states of the USV closed-loop control 
system remain bounded.

SIMULATION RESULTS AND ANALYSIS

In this section, simulation studies are performed 
to illustrate the effectiveness and robustness of the 
proposed control scheme. A USV from the Norwegian 
University of Science and Technology [22] is adopted 
and the parameters used for it are given in Table 1. The 
reference trajectory is selected as ( ) 100sin 0.1dx t=  
and ( ) 100cos 0.1dy t= . The initial position and 
velocity of the USV are [ ]30 110 9 Tη π= −  and 

[ ]2 0 0 Tυ = . The time-varying external disturbances 
are given as ( ) ( )10 sin 0.1 cos 0.05wu t tτ = +   , 

( ) ( )0.01 0.01sin 0.1 0.01cos 0.05wv t tτ = +   ，and 
( ) ( )0.1 0.2sin 0.1 0.1cos 0.05wr t tτ = +   , and the 

units are ( )N  and ( )mN ⋅ , respectively. From (20) and 
(21), we can find that 1λ  and 2λ  are integral factors. If the 
values chosen are too small, the system may be unstable. 
However, small integral factors can eliminate steady-state 
error and improve the accuracy of the system. And 3λ  is 
a proportional coefficient, which can speed up the reaction 
speed of the system and reduce the steady-state error. The 
coefficient selected should be neither too large nor too small: 
a large coefficient may make the system unstable and a small 
coefficient can reduce the reaction speed of the system. 

Therefore, 1 2,λ λ  , and 3λ  should be selected carefully. Then, 
it can be found from the theoretical analysis of Theorem 1 that 
the remaining control parameters 1 2, , x yK K k and k  should 
be designed to be positive. As with the performance function 
parameters, it is obvious that the parameter 0ρ  denotes 
the bound of the overshoot, ρ∞  represents the maximum 
allowable steady-state tracking error, and l  influences the 
convergence rate of the tracking error. Based on the above 
analysis and the debugging results, the control parameters are 
chosen as 1λ  = 3, 2λ  = 0.9, 3λ  = 0.2, 1K  = 5, 2K  = 0.7, xk  
= 0.4, yk  = 0.04, and δ  = 0.4 and the performance function 
is chosen as ( ) ( ) 0.280 0.06 0.06t e= − + . To show the 
advantages of the proposed algorithms, two conditions are 
compared and evaluated: with and without the predefined 
performance bounds. 
Table 1. Parameters of the USV

Parameter Value Unit

m 23.8 kg

L 1.255 m

B 0.29 m

zI 1.760 2kg m⋅

uX


-2 kg

vY


-10 kg

rY


    0 kg

vN


0 kg

rN


-1 2kg m⋅

uX -0.72253 kg / s

vY -0.88965 kg / s

rN -1.900 2kg m / s⋅

u uX -1.32742 kg / s

v vY -36.47287 kg / s

v rN 0.080 kg / s

Remark 3: Without loss of generality, simulations are 
adopted with the same initial position, reference trajectory, 
and control parameters. The blue solid line represents the 
proposed robust sliding mode control method based on 
prescribed performance. The dashed line in green expresses 
the proposed method without prescribed performance (PP) 
and the black dashed line represents the proposed method 
without time-varying external disturbances (TED). The 
simulation time is set as 100 s. Then, the simulation results 
are as shown below.
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Fig. 4. The position curve of trajectory tracking for the USV 

Fig. 5. Time response of the tracking errors for the USV

Fig. 6. Trajectory tracking errors and performance bound

Fig. 7. The yaw rate of trajectory tracking for the USV 

Fig. 8. Time response of the control input curve for USV

Figure 4 gives the change of positions and heading. Whether 
or not the impact of time-varying external disturbances is 
taken into account, the controller performs the tracking 
mission well. In comparison, the proposed controller with 
prescribed performance converges faster. It is shown that the 
proposed controller has strong robustness to time-varying 
external disturbances.  The tracking errors are shown in 
Figure 5, where the convergence time of the method without 
prescribed performance is more than 50 s. Besides, it will 
lead to undesirable transient-state performance when the 
large overshoot exceeds the boundary. As can be seen from 
Figure 6, the constraints for the case without the prescribed 
performance method where the tracking error is greater 
than 0.1 m, clearly exceed the performance boundary. On 
the contrary, the proposed method can quickly converge to 
the bounded sets and will always be maintained between 
the prescribed upper bound and lower bound with small 
overshoots. The prescribed performance function is designed 
to ensure the performance of the tracking control without 
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any prior knowledge about the initial errors. The yaw rate of 
trajectory tracking for the USV is shown in Figure 7. Compared 
with the proposed controller, the method without prescribed 
performance requires greater control forces, which results 
in larger overshoots. The control inputs [ ]0u rτ τ τ Τ=  
are depicted in Figure 8, where only surge force and yaw 
moments exist. It is shown that the control force and moment 
can guarantee the stability of the closed-loop system under 
time-varying external disturbances. It can be concluded that 
the designed controller ensures that the tracking errors are 
within the predefined bounds and produce better transient 
and steady-state performance compared to the one without 
prescribed performance.

CONCLUSION

In the presence of time-varying external disturbances, 
the problem of trajectory tracking control for a USV with 
prescribed performance has been solved in this paper. Based 
on error transformation technique, a robust prescribed 
performance tracking control law is designed in combination 
with sliding mode technology. Meanwhile, the prescribed 
performance bound approach, which is combined with 
Lyapunov theory, successfully ensures that the tracking 
errors of the USV remain within the required performance 
constraints. The results of the simulation and comparison 
show that the tracking errors of the proposed controller 
remain strictly within the predefined bounds, while the 
one without prescribed performance cannot guarantee this.
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