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ABSTRACT

Journal and thrust bearings utilise hydrodynamic lubrication to reduce friction and wear between the shaft and the bearing. 
The process to determine the lubricant film thickness or the actual applied load is vital to ensure proper and trouble-free 
operation. However, taking accurate measurements of the oil film thickness or load in bearings of operating engines is very 
difficult and requires specialised equipment and extensive experience. In the present work, the performance parameters of 
journal bearings of the same principal dimensions are measured experimentally, aiming at training a Machine Learning 
(ML) algorithm capable of predicting the loading condition of any similar bearing. To this end, an experimental procedure 
using the Bently Nevada Rotor Kit 4 is set up, combined with sound and vibration measurements in the vicinity of the 
journal bearing structure. First, sound and acceleration measurements for different values of bearing load and rotational 
speed are collected and post-processed utilising 1/3 octave band analysis techniques, for parametrisation of the input 
datasets of the ML algorithms. Next, several ML algorithms are trained and tested. Comparison of the results produced by 
each algorithm determines the fittest one for each application. The results of this work demonstrate that, in a laboratory 
environment, the operational parameters of journal bearings can be efficiently identified utilising non-intrusive sound 
and vibration measurements. The presented approach may substantially improve bearing condition identification and 
monitoring, which is an imperative step to prevent journal bearing failures and conduct condition-based maintenance.

Keywords:  Journal bearing loading condition, RK4 Bently Nevada, Vibration and acoustic pressure signal, Octave band signal analysis, 
Machine learning algorithms

INTRODUCTION

There are several approaches used for condition monitoring 
and predictive maintenance of journal bearings, such as 
vibration, noise and acoustic emission monitoring and analyses, 
focusing on detecting and identifying patterns and trends in 
the recorded signals, and correlating them with present or 
upcoming fault conditions [1, 2]. Further, lubricating oil and 
wear debris analyses [3] are commonly used for assessing 
lubricating oil quality [4], focusing on analysis of the size, 
shape, quantity and composition of wear particles generated 
during operation, correlating the findings to the machine 
condition, and determining the effective wear mechanisms 
(sliding, rubbing, rolling, abrasion, etc.). Among them, vibration 

analysis is the most popular in practical mechanical engineering 
applications, supported by a wide related literature, mainly for 
roller bearing condition assessment. On the other hand, in 
marine engineering applications, and particularly in the study 
of line and stern tube bearings of the propulsion shafts, the 
most applicable method is that of oil temperature monitoring, 
due to the very compact designs, accessibility restrictions and 
limited advanced sensor equipment onboard modern vessels. 

In marine applications, the propulsion shaft is supported 
by a large number of journal bearings, forming a statically 
indeterminate multi-supported beam structure. The vertical 
offsets of the supporting bearings change during normal ship 
operation, mainly due to the different ship loading conditions 
and propeller immersion states, which in turn affect the load 
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that each bearing supports. A proper shaft alignment plan is 
thus required, which determines appropriate bearing vertical 
offsets that lead to an equal distribution of loads among the 
supporting bearings. In operation, shaft alignment may be 
considerably influenced by hull deflections, due to different 
loading and environmental conditions. The robustness of the 
shaft alignment at different loading conditions of the ship should 
be carefully assessed [5], to avoid conditions where the bearings 
are either overloaded (which leads to operation with very small 
minimum film thickness, increased wear and inability to support 
sudden impact loads) or very lightly loaded, characterised by 
very limited vertical stiffness and thus prone to extreme lateral 
vibration levels and oil whirling (several case studies regarding 
whirling vibration problems have been presented in [6]). The 
current effective regulations for elastic shaft alignment in ships 
[7, 8] demonstrate upper and lower bearing load limits for safe 
and reliable operation of the ship propulsion shaft.

Several studies have been conducted in the past focusing 
on defect identification in journal bearings utilising vibration 
or sound signals. Ma and Zhang have investigated in [9] the 
excitation mechanisms and contributions of tribofilm‒asperity 
interaction that occur in the hydrodynamic lubrication regime 
of journal bearings. They also used the spatial power spectral 
density as a feature of the non-Gaussian roughness surfaces 
for early wear to analyse the microscopic pressure fluctuations, 
aiming to provide a new understanding for characterising 
noisy vibration signals for early wear monitoring of journal 
bearings. They extended this work in [10], focusing on the 
diagnosis of abrasive wear, to find out that wear-induced 
narrowband spatial components of the journal surface can 
excite random vibration of the bearing. The speed-dependent 
vibrational behaviour is found to be an effective indicator of 
surface defects. Additionally, vibration signals have also been 
used for bearing wear state detection by Wang et al. [11] and oil 
analysis for wear debris detection by Appleby [12]. Šaravanja 
and Grbešić in [13] highlight that the most important step in 
the vibrational diagnostics of journal bearings is the choice 
of measuring points, as well as the choice and mounting of 
sensors, most of which depend on the accuracy of the test 
and the results obtained. Lastly, according to Poddar in [14], 
vibration and acoustic emission are proven techniques in fault 
diagnosis of ball bearings and gears, but their applications to 
journal bearings have not been fully explored. Despite extensive 
research work being done on its design aspects, there is a dearth 
of studies on condition monitoring and fault diagnosis of 
journal bearings through vibration and acoustic emission. 
This work, on the other hand, aims at the development of 
journal bearing performance identification tools utilising ML 
techniques.

Python is one of the programming languages that has an ML 
module with most of the commonly used algorithms and gets 
regularly updated to meet new and more complex needs [15]. 
Due to the low computational cost and high computational 
speed, Python appears to be a simple and trustworthy choice. 
In tribology, ML algorithms such as Decision Trees and Support 
Vector Machines have been used in the literature initially for fault 
diagnosis purposes, especially in roller bearings, focusing on 

the feature selection methodology [16] or following a statistical 
feature selection [17] to extract critical information primarily 
from sound sensor signals [18] to assess the roller bearing 
operational state or fault. ML has also been used as a tool for 
journal bearing fault identification and more particularly by 
Salunkhe and Desavale in [19] as an intelligent method for 
the detection of bearing vibration characteristics. Rauber et al. 
proposed the utilisation of ML as a method for fault diagnosis 
based on vibration signals [20] and Umbrajkaar et al. have 
extended the utilisation of ML towards the identification of 
shaft-related performance parameters, conducting vibration 
analysis of the shaft misalignment under variable load 
conditions [21]. In this work, several ML algorithms will 
be tested utilising experimental data and features extracted 
utilising the octave band analysis for the prediction of several 
performance parameters of the bearing. 

PROBLEM DESCRIPTION – METHODOLOGY

The present work is concerned with the development of ML 
algorithms to predict the real-time steady-state performance 
indices of journal bearings (load, minimum film thickness) 
over a wide range of bearing load and rotational speed values, 
utilising sound and vibration measurements.  First, a set of 
experiments has been set up and conducted. In particular, 
journal bearings of the same principal dimensions have been 
prepared and tested experimentally for different combinations of 
bearing load and journal rotational speed. For each experiment, 
sound and vibration measurements in the vicinity of the journal 
bearing structure have been additionally performed, and the 
corresponding signals have been post-processed and stored. 
All experiments have been conducted on the Bently Nevada 
Rotor Kit 4 of the Laboratory of Marine Engineering, NTUA, 
which is equipped with a data acquisition system (DAQ), 
controlled by a LabView application for processing and storing 
all measurement data. 

Next, a one-third octave analysis has been performed for 
recorded sound and vibration signals for different segments of 
the signal length; a source code written in Python performs the 
required calculations along with all the necessary adjustments. 
The frequency band domains produced from this analysis are 
used to generate the feature space of the ML algorithms. The 
importance of each feature varies depending on the problem at 
hand. The algorithms’ results depend greatly on the information 
given through the features, and the user should pay attention 
to the selection process. 

Based on the studied cases, we have further investigated the 
signals and features which enable determination of the load 
status of a bearing. The main goals of the study are summarised 
below:

signals, and (c) a combination of the above.

predict the loading condition of a similar bearing and what 
features enable this function.

bearings (of the same type/principal dimensions) can produce 
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an algorithm that will enable accurate predictions for the 
entire bearing family. 

MACHINE LEARNING ALGORITHMS

Over the past years, ML algorithms have attracted a lot 
of attention and have been extensively used for classification 
problems, aiming to recognise or predict different classes 
within a dataset. Selecting a programming language for ML 
and data science depends on the project or experience from 
previous projects. Python is an object-oriented programming 
language [22], widely used in ML and scientific applications, 
having libraries such as Scikit-learn and SciPy for ML 
and data analysis. The Scikit-learn ML library [23] is well 
documented with many examples and tutorials, features 
various classification, regression and clustering algorithms 
including support vector machines, random forests and 
gradient boosting, and cooperates very well with Python’s 
numerical and scientific libraries NumPy and SciPy, as well 
as with the rest of the available open-source libraries. The 
common classification algorithms that we also utilised in this 
work are presented here.

k-Nearest Neighbours
k-Nearest Neighbours algorithms used for classification are 

simple and only require the storage of the training dataset. 
They create a space with as many dimensions as the number 
of the dataset’s features, and do not build an internal model 
to aid with the prediction. This space is then populated with 
the training data. Given a new data point, the algorithm 
searches for the closest point in the multi-dimensional space. 
k represents the number of closest points that will participate 
in the majority vote to classify the new data point and its value 
is set manually. The class assigned to each entry is the one with 
the most representatives in the k nearest neighbours.

Decision Trees
The Decision Trees are models that create an order of if/else 

questions that ultimately lead to a prediction of the value of 
the target variable. Each question splits the data into smaller 
groups. The aim of the question is to split the data in the most 
efficient way in order to make a quick and accurate prediction. 
The number of questions asked is chosen by the user and is in 
principle one of the basic termination criteria of the algorithm 
[24, 25]. Each newly formed group is called a node (decision 
node) and the size of the node could serve as a termination 
criterion (prediction node). The training process is performed 
including all data features.

Random Forest
Random Forests are a way to solve some inherent drawbacks 

of Decision Trees. A random forest is a set of many random 
trees that are differentiated from each other in terms of the 
data points used to build the tree and the features used for each 
split. The algorithm starts (b =Ź1) by drawing a sample from 
the whole training dataset and creating a tree (T) according 
to a set of features drawn from the available feature space. 

Once the minimum node size nmin is reached, the algorithm 
creates the next random tree until b = B, where B is the number 
of estimators (random forest trees) defined by the user. The 
end of the training results in an ensemble of trees {T}1

B. After 
the random forest trees are created, the algorithm makes 
a prediction for each tree. If the model solves a regression 
problem, the algorithm averages the prediction branch results 
to produce a prediction for the new data point x; if the model is 
conducting classification, then the algorithm creates a voting 
strategy where every tree provides a probability for each class 
and then all the probabilities are averaged to target the most 
probable class.

Gradient Tree Boosting
In Gradient Tree Boosting methods, the algorithm generates 

trees in a “serial” way and each new tree attempts to correct 
the mistakes of the previous one. The user defines the tree 
size and aims to initialise with shallow trees, which is called 
pre-pruning. These shallow trees are called weak learners and 
their depth usually varies between two and five. Each weak 
learner has a small effect on the algorithm’s prediction. As 
more trees (m) are added, the performance of the algorithm 
improves until the maximum number of trees is reached (M), 
or until the prediction accuracy is not improving any further 
after several iterations.

EXPERIMENTAL SETUP

The Bently Nevada Rotor Kit Model RK4 used in the 
experimental part of the present work consists of a Bently 
Nevada electric motor, coupled by means of a flexible coupling 
to a 10 mm steel shaft. The motor supports rotational speeds 
of up to 10,000 rpm, controlled by a Bently Nevada RK-4 
Speed Control unit, which has a digital display to indicate 
the speed. The operator can monitor the current rotational 
speed of the device or set the desired operating speed. The 
controller measures the shaft rpm with the help of a proximity 
probe mounted on a suitably configured gear wheel. The shaft 
features a 24.5 mm diameter at the free-end for a length of 
25.4 mm. The free-end part of the shaft is supported by a radial 
bearing; lubricating oil is supplied to the bearing by means 
of a Bently Nevada RK4 oil pump. The shaft eccentricity and 
attitude angle are measured by means of two perpendicularly 
mounted proximity probes. The shaft is additionally supported 
at the motor end by a simple dry radial bearing. Additional 
weights are attached to the shaft, which can be used to modify 
the bearing loading. Specifically, there are two cylindrical 
masses 75 mm in diameter and 25 mm in length, weighing 
0.800 kg each [26] [27]. The bearing load can be adjusted by 
appropriate axial translation of the cylindrical masses. In 
the present experimental work, bearing loads of 2.0, 8.0 and 
14.0 N have been considered. The motor and the bearings are 
mounted on a long, rigid steel base. The main dimensions of 
the shaft are presented in Table 1 and the Bently Nevada RK-4 
experimental setup designed for the current experiment is 
presented in Fig. 1.
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In the experimental part of this work, two almost identical 
journal bearings have been used, in particular a Plexiglas (Poly 
methyl methacrylate, PMMA) and an Acetal (Polyoxymethylene, 
POM) bearing. The first bearing is a ServoFluid Control Bearing 
designed, manufactured and assembled by Bently Nevada. The 

second bearing used is manufactured according to the design 
plans of Bently Nevada [26]. The inner diameter of the bearings 
has been measured with a three- point internal micrometer. 
The oil resistance properties of both bearings were tested, 
confirming that the dimensions and properties of the bearing 
would not change throughout the experimental procedure. The 
nominal geometric dimensions of both bearings (ServoFluid 
Control Bearing and Custom Acetal Bearing) are presented in 
Table 1. The Bently Nevada RK-4 ServoFluid Control Bearing 
components are presented in Fig. 2.

Bearing acceleration signals were measured using an ICP® 
Model 356A02 triaxial accelerometer with a hexagonal base. 
Its frequency range (±10%) spans between 0.5 and 6000 Hz and 
has a measurement range of ±500 g pk [28]. The hexagonal base 
of the accelerometer is mounted on the surface with the instant 
adhesive Loctite 454, and the accelerometer is then secured 
to the base. Also, an ICP® 130D21 Array Microphone, a pre-
polarised condenser microphone coupled with an ICP® sensor 
powered preamp, is utilised for sound pressure measurements. 
The frequency response of the sensor (-2 to 5 dB) is 20 to 
15000 Hz [29].

In order to improve the accuracy of the sound pressure 
results obtained, a soundproof cover was designed and mounted 
on the top part of the bearing. This cover works beneficially 
in two ways: (a) it insulates the sound waves produced by 
the bearing assembly from external sound sources and (b) it 
absorbs the reflection waves from the assembly to reduce noise 
in the microphone. The sensor installation and setup for the 
current experiment are illustrated in Fig. 3.

Fig. 1. Bently Nevada RK-4 experimental setup

Fig. 2. Bently Nevada RK-4 ServoFluid Control Bearing and ACETAL Bearing installation [26]

Fig. 3. Sensor installation and experimental setup 

Tab. 1. Shaft and bearing principal dimensions

Shaft dimensions Bearing dimensions

Length overall 480 mm Inner diameter 25.43 mm

Main diameter 10.0mm Length 25 mm

Free-end diameter 24.5 mm Clearance 0.225 mm

Free-end length 25.4 mm

Total weight 0.3626 kg
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SIGNAL COLLECTION – DATA PROCESSING

Before performing the experiments, it is necessary to 
properly prepare the experimental setup of the RK4 Speed 
Control Unit and the computer that will receive the results of 
the measurements of each experiment utilising NI LabVIEW. 
The accelerometer and the microphone are connected 
to a Model 482A22 ICP® Sensor Signal Conditioner. The 
conditioner is connected to the IoTech DaqBook 2000 [30], 
which will gather signals from different signal conditioners 
and simultaneously send them to the data acquisition card. 
The data acquisition card used is the IoTech DaqBoard 2001 
and constitutes the input of the analog signal in the computer. 
The software installed on the computer is NI LabView 2017 
[31, 32]. The data acquisition is performed in single-ended 
mode and refers to the circuit’s setup, in which the voltage 
is measured between one signal line and common ground 
voltage (Vcm).

The measurements are acquired from the microphone and 
the accelerometer with a sampling rate of 1000 samples/sec 
and the mean duration of each experiment is 30 seconds. 
These acquisition parameters are set in LabVIEW software, as 
illustrated in Fig. 4. The rotational speed of the shaft is different 
for each experiment and thus a one-minute window between 
the experiments is necessary. In this way, the effect of the 
transitional phenomena on the measurements is significantly 
reduced. The file produced after each experiment is a comma 
delimited values file (.csv) with every line containing an 
instance with five values: “sound pressure”, “acceleration x”, 
“acceleration y”, “acceleration z” in mV and “rotational speed” 
in rpm. The measured values, given in mV, are calibrated in 
actual units (pressure, acceleration) using the following values 
as multipliers: Sound_Press = 33.8 mV/Pa, X_acc = 1.002 
mV/m/s2, Y_acc = 0.990 mV/m/s2, Z_acc = 0.979 mV/m/s2.

In the present experimental work, the rotational speed is 
varied in the range from 500‒4600 rpm, getting the specific 
discrete classes of rotational speeds: 500 / 1000 / 1800 / 2500 / 
3300 / 4000 / 4600 rpm. A small variation of the speed during 
each experiment of ± 5 rpm is considered acceptable.

Octave band analysis
In the present work, the one-third octave band analysis is 

used to filter the acceleration and sound pressure signals. This 
type of analysis is chosen for two main reasons:
1.  The frequency domain reveals frequency components and 

their individual amplitudes, 
2.  It can be combined with ML for feature extraction (in 

comparison to an FFT analysis). 

Vibration signals of interest can extend between frequencies 
from 0.1 Hz to around 70 Hz, whereas noise signals can 
reach very high frequencies depending on the application 
(e.g., aircraft generate high frequency noise) [33]. In general, 
vibrational signals hold high energy at the lower spectrum 
range, while energy is substantially lower at high frequencies. 
Here a low pass filter has been used which cuts off frequencies 
above 70 Hz. It should be noted here that, in actual working 
environments, high frequency vibrations are less useful, since 
they are influenced by the operation of other neighbouring 
machinery. 

Out of the many types of frequency bands, the octave 
or one-third octave bands are the most frequently used for 
frequency analysis. In the present study, vibration and sound 
signals are sampled and processed utilising the octave band 
analysis to extract features. These independent features are 
used as input for the several ML algorithms tested, aiming to 
determine the performance parameters of the journal bearing 
in a series of case studies. The proposed algorithm should 
be agnostic of the current operation of the bearing. Thus, 
no fundamental frequencies were considered, which would 
impose a bias in the algorithms. Each band’s power level, 
represented by its centre frequency, will be a feature, namely 
0‒70 Hz for vibration signals and 0‒400 Hz for sound signals, 
will be named as features #1‒19 and #20‒#31 respectively for 
the training process of the ML algorithms. In Figs. 5 & 6 
examples of the one-third octave analysis for a sound and 
acceleration Z signal respectively are illustrated. 

Fig. 4. Sample sound and acceleration Z raw signals for 1 sec duration, 3300 rpm
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SHAFT ALIGNMENT CALCULATIONS

To determine the mean load of the bearing, an inhouse 
Shaft Alignment Software developed at the Laboratory of 
Marine Engineering, NTUA is used. The Shaft Alignment 
Software creates a model of the shaft based on the shaft 
dimensions and material properties. The support points and 
other external forces are then defined in order to determine 
the elastic deformation of the shaft and the reaction of the 
support points. The software uses a matrix analysis method and 
supports statically indeterminate shafts; thus, it is commonly 
used for alignment calculations of ship propulsion shafts. For 
proper modelling of the shaft, the following steps are taken: 
(i) discretisation of the shaft and selection of the appropriate 
beam element quantity, (ii) determination of beam properties, 
(iii) determination of support nodes and nodes where external 
forces are exerted, (iv) application of forces and moments. 
A typical calculation result, for a case with an external load of 
7.845 N (cylindrical mass) applied to the shaft and two support 
points (bearings), is presented in Fig. 7.

MEASUREMENT PROCEDURE 
AND EXPERIMENTAL RESULTS

The measurement procedure can be briefly summarised 
as follows:
1.  The bearing load is adjusted by appropriate axial translation 

of the cylindrical weights,
2.  Bearing lubrication is started,
3.  The bearing motor is started and the shaft is accelerated 

to reach the initial rotational speed (500 rpm). Rotation is 
maintained until the temperature is stabilised, following an 
exponential function, to reach asymptotically the constant 
value throughout the entire experiment.

For each different desired rotational speed:
1.  The shaft is accelerated to the desired rotational speed. 

Rotation is maintained until the lubricant temperature is 
stabilised,

2.  After steady-state conditions have been reached, data 
recording is initiated for a period of 30 seconds. Several 

Fig. 7. Shaft Alignment Software: shaft modelling and results

Fig. 5. One-third octave power level spectrum representations – sound signal

Fig. 6. One-third octave power level spectrum representation – acceleration z signal
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30-second recordings are initiated for each combination 
of rotational speed and bearing load,

3.  Sound and vibration signals are recorded.

Experiments are conducted for different combinations of 
bearing load and shaft rotational speed. In particular, the 
rotational speed ranges from 500‒4600 rpm, with intervals in 
the following vector: {500, 1000, 1800, 3300, 4000, 4600} rpm. 
Three different bearing loads have been considered, namely 
2, 8 and 14 N. Therefore, the total set of experiments consists 
of 6x3 = 18 different states. 

The acceleration and sound signals are converted using 
FFT into frequencies in order to apply the 1/3 octave filter into 
the frequency domain. It is very important to ensure that the 
experiment duration is adequate in order to collect and extract 
all the essential information from the dataset applying the 1/3 
octave analysis. If the sampling duration is not long enough, 
then the low frequencies, which are essential especially in the 
vibration signal, will be filtered out. 

Features extracted from the octave band analysis were 
evaluated based on their importance and their positive effect 
on ML prediction accuracy. Essentially, measurements for 
bearing operation in the large range of 500‒4600 rpm are 
affected differently by central natural frequencies (features), 
which in turn affect the ML algorithm prediction accuracy. 
Additionally for a holistic study it is not possible to focus on 
different frequency features for each speed value and the selected 
features should be optimal for the entire range of rpm and 
frequency values. Thus, the limit was set to 70 Hz, in part aiming 
to highlight that the ML prediction accuracy can be very high 
(more than 90%, see e.g., Tables 3 & 4), although the natural 
frequency of some shaft rotational speeds within the range 500-
4600 rpm is not included as a “special”, more important feature.

Finally, the test data are divided into two categories. In the 
first category, the 80-20 rule for training and test data is selected 
and cross-validation is implemented, followed by evaluation of 
the algorithm’s performance. The second category includes an 
additional set of test data, coming from a completely different 
experimental dataset, e.g., combinations of rotational speed – 
load not included in the initial predefined values. The obtained 
data are used for training and testing of the ML algorithms 
according to the detailed needs of each case study.

CASE STUDY 1 – SIGNAL SELECTION

In order to determine which of the four signals (x,  y, 
z acceleration and sound) performs optimally for the task at 
hand, a simple test is conducted, using as input one of these 
values each time. The target label depicts the mean load of 
the bearing. After the hyper-parameter tuning, the algorithms 
are executed and the results are evaluated. In this case study, 
the entire data set for a single bearing is used, except for the 
states of (1800 rpm - 14 N) and (4600 rpm - 2 N). The features 
utilised in the case studies are numbered as features #1‒#19 
to represent the power level of each one-third octave band, 
characterised by the respective centre frequency values of the 
vibration signal (0‒70 Hz) and as features #20‒#31 to represent 

the power level of each band, characterised by the respective 
centre frequency values of the sound signal (0‒400 Hz). All 
features are normalised automatically before they are utilised as 
input in the ML algorithms tested. The score achieved for each 
classification and regression algorithm is presented in Table 2. 
The sound signal produces better results without overfitting 
of the data, the acceleration z signal is the second best, and 
acceleration x and y are the least efficient features for accurate 
predictions. 

The best performing algorithms applied are the Random 
Forest Classifier (RFC), the k-Nearest Neighbours Classifier 
(KNN) and the Gradient Boosting Regressor (GBR). It should 
be noted that the acceleration x and y results are unstable during 
cross-validation, with very little positive effect on the overall 
prediction accuracy of the algorithms. Based on these findings, 
only the sound and acceleration z signals are utilised as input for 
training in the following case studies. In some clearly distinct 
cases, acceleration z signals achieve good standalone results, 
but in most cases, a combination of sound and acceleration 
z signals will be used to achieve the optimum results.

CASE STUDY 2 – RPM PREDICTION  
FOR A GIVEN LOAD (8N)

This case study aims to determine the rotational speed of 
the shaft by using the sound signal produced by the bearing. 
The training samples have one second duration and 30 samples 
are used for each rotational speed. The test data are randomly 
chosen from the training data pool constituting 10% of the 
total test data volume. The actual rpm value and the algorithm’s 
prediction are then presented in order to evaluate its accuracy. 
Training and test data are selected only in the intermediate 
range of 8 N load for every rpm scenario. Also, features for 
sound signal space are used, numbered #20‒31 representing 
one frequency band each.

Fig. 8 is a radar type chart that illustrates the importance 
in [%] values of features #20‒31 used in this study. Features 
#20‒31 represent the acoustic level of each band, characterised 
by the respective centre frequency values of the sound signal 
(0‒400 Hz). In the radial direction, the values of the concentric 
grey circles are 2%‒37%, demonstrating the different effect 
that each feature may have on the accurate prediction of the 
shaft rotational speed in the selected rpm cases that were 
tested. Reviewing Fig. 8, one can observe that the frequency 
signature of each rotational speed differs, so the results of this 
case study are as expected. Fig. 9 is a pie chart type and shows 
the importance of each feature in the decision-making processes 
of the RFC and GBR algorithms respectively. This figure also 

Tab. 2. Vibration and sound accuracy

Vibration & Sound Accuracy

AccX AccY AccZ Sound

RFC 70% 80% 85% 98%

KNN 80% 80% 85% 98%

GBR 66% 53% 67% 99%
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demonstrates which frequency bands (features) are the most 
important for accurate ML predictions and thus can be an 
efficient tool for engineers who need to select which frequency 
signals to sample depending on the case. The algorithms used for 
feature importance selection are the RFC and the GBR. For both 
algorithms, a maximum tree depth of 3 is used and a number 
of estimators (trees) equal to 50 in order to avoid overfitting.

The classification problem presented in Table 3 was very 
accurate, as expected by manually observing the feature values. 
The regression problem presented in Table 4 has a  larger 
variance in the 500 rpm cases. Furthermore, the 4600 rpm 
value is predicted three times as 4572 rpm which, after data 
analysis, occurs due to the value similarity and the equally 
high importance of features #28 and #30. As a result, the rpm 
feature will be used as a predictor in some case studies, to take 
maximum advantage of the existing high precision equipment 
measuring the shaft rotational speed.

CASE STUDY 3 – LOAD PREDICTION FOR GIVEN 
RPM (ACCELERATION Z & SOUND SIGNAL)

In this case study, the goal is to determine the loading 
condition of the bearing using primarily (a) the acceleration 
z and secondarily (b) the sound signal. Thirty samples per load 
per rotational speed are used for training with a duration of 
3 seconds. The 80%-20% rule is used to divide the training 
and test data. The algorithms tested are the RFC, the KNN 
and the GBR, utilising the entire acceleration z signal feature 
space, numbered as; #1‒#19.Fig. 9. Feature importance for RFC and GBR

Fig. 8. Feature values

Tab. 3. RFC confusion matrix, Case study 2

Tab. 4. GBR prediction of rpm table (98.9% accuracy)

RFC Confusion Matrix

PR
ED

IC
TE

D
 V

A
LU

E

500 19.05% 0,0% 0,0% 0.0% 0.0% 0.0% 0.0% 100%

1000 4.76% 9.52% 0,0% 0.0% 0.0% 0.0% 0.0% 66.67%

1800 0,0% 0.0% 19.05% 0.0% 0.0% 0.0% 0.0% 100%

2500 0.0% 0.0% 0.0% 9.52% 0.0% 0.0% 0.0% 100%

3300 0.0% 0.0% 0.0% 0.0% 19.05% 0.0% 0.0% 100%

4000 0.0% 0.0% 0.0% 0.0% 0.0% 4.76% 0.0% 100%

4600 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 14.2 % 100%

Sum 80% 100% 100% 100% 100% 100% 100% 95.24%

500 1000 1800 2500 3300 4000 4600 Sum

ACTUAL VALUE

GBR Prediction of rpm Table

Actual Value 500 500 500 500 500 1000 1000

Predicted 546 515 560 542 514 1013 1012

Actual Value 1800 1800 1800 1800 2500 2500 3300

Predicted 1803 1788 1815 1764 2504 2553 3296

Actual Value 3300 3300 3300 4000 4600 4600 4600

Predicted 3299 3299 3308 3993 4572 4572 4572
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Fig. 10 shows the feature importance concluded utilising the 
RFC algorithm. Features #11, #12, #14 and #18 and the respective 
frequency bands are selected as the most important ones 
according to RFC. Furthermore, Fig. 11 shows a 3D visualisation 
of the multi-dimensional samples, where the three different 
loading cases are distinguished by colour. In Fig. 11 only three 
selected feature dimensions out of the total 20-dimensional 
mapping produced by the KNN are demonstrated, namely #12, 
#14 and rpm. The “k” value of nearest neighbours significantly 
affects the results of the algorithm and should be tuned during 
the training process; in this case study k = 4.

The results produced by each algorithm are shown in 
Tables 5 & 6. KNN has a class prediction accuracy ranging from 
93‒97% and RFC from 77‒83%. GBR is not presented due to the 
low accuracy and high variance of the results. The prediction 
accuracy is improved by excluding the least important features 
from the training and testing process. An extensive feature 
selection process will be further examined in the next steps 
of this case study. 

The second part of this case study, (b), aims to determine 
the loading condition of the bearing by using the sound signals 
acquired in the experimental procedure. The data format is 
the same and the algorithms used are again RFC, KNN and 
GBR, utilising the entire sound signal feature space, numbered 
as #20‒#31.

In Fig. 12 the feature importance chart results for each 
algorithm are presented. The RFC has assigned at least a small 
importance percentage to every feature, due to its algorithmic 
rule to divide the importance probability between features. RFC 
has given the highest percentage to features #25, #28 and #31, the 
same features that the GBR has selected as the most important. 
It should be noted that in the GBR feature importance chart only 
the three most important features are visible because the rest 
have a very low importance score and are therefore excluded.

The results of the feature importance can be explained by 
reviewing Fig. 13. In this figure, it is visible that the three 
loading conditions are creating three separate areas of 
operation in terms of features #25, #28 and #31. This makes 
it possible for the algorithm to accurately predict the mean Fig. 10. Feature importance, RFC, Case study 3a

Fig. 11. 3D KNN visualisation of rpm, features #12 and #14, Case study 3a Fig. 13. 3D KNN Visualisation of features #25, #28 and #31, Case study 3b

Tab. 5, 6. KNN, RFC confusion matrix, Case study 3a

PR
ED

IC
TE

D

KNN Confusion Matrix

2N 26.3% 0.0% 0.9% 96.8%

8N 0.9% 39.5% 0.9% 95.7%

14N 0.0% 0.0% 31.6% 100%

Sum 96.8% 100% 94.7% 97.4%

2N 8N 14N Sum

ACTUAL VALUE

PR
ED

IC
TE

D

RFC Confusion Matrix

2N 20.0% 1.7% 0.0% 92.3%

8N 1.7% 21.7% 0.8% 89.7%

14N 6.7% 7.5% 40.0% 73.9%

Sum 70.6% 70.3% 98.0% 81.7%

2N 8N 14N Sum

ACTUAL VALUE

Fig. 12. RFC and GBR feature importance, Case study 3b
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load of the bearing and for the user to visualise the results and 
understand a very practical benefit arising from the octave 
band analysis applied in this technique. Note that the variable 
colour intensity marks the position of each point in the layer 
depth of the 3D plot.

The confusion matrices of KNN and RFC for Case study 3b 
are shown in Table 7 and Table 8 respectively. The accuracy of 
both classifiers is higher than 97% and overfitting is avoided 
through proper hyper-parameter tuning and with application 
of 10-fold cross validation. In addition to the classifier results, 
the Gradient Boosting Regressor (GBR) achieved 99.57% 
accuracy of predictions, demonstrating also very promising 
results for the regression model.

CASE STUDY 4 – LOAD PREDICTION  
WITH SOUND SIGNAL, FOR UNTRAINED  
LOAD-RPM COMBINATIONS

In this case study several sets of rpm‒load combinations 
are excluded from the training process and used only for 
testing. The scope of these experiments is to evaluate each 
algorithm in terms of its handling process for new data and 
to compare the ability of several ML algorithms to accurately 
predict unknown data combinations: (a) interpolating within 
the initial dataset grid or (b) extrapolating outside the dataset 
grid or (c) finding values at the border of the dataset grid. In 
cases III and V the rpm‒load combinations are chosen to be 
the marginal combination values of the rotational speed and 
loading condition. The algorithms tested are the RFC, KNN and 
GBR. Other algorithms have also been tested but, overall, these 
had the highest accuracy. All sound signal features are used in 
every case. Each case will be named after the combination of 
“missing target data” that are not used for the training process. 
The results are summarised as follows: 
 I.  (8N, 500 rpm); RFC & KNN accuracy:100%, GBR accuracy: 

98%
 II.  (8N, 2500 rpm); RFC accuracy: 100%, GBR accuracy: 98%
 III.  (2N, 500 rpm); RFC, KNN, GBR: unstable
 IV.  2N, 1000 rpm); RFC, KNN accuracy: 100%, GBR accuracy: 

98%
 V.  (14N, 4600 rpm); RFC accuracy: 100%, GBR: unstable
 VI.  (14N, 4000 rpm); RFC accuracy: 100%

Most algorithms achieve very good accuracy in predictions 
of intermediary combinations of rpm‒load, but the accuracy 

decreases dramatically when reaching the edge of the dataset 
grid. This implies that a fine mapping of the bearing’s operation 
is needed to extract a trustworthy prediction model. Unstable 
predictions could indicate that the input belongs to an 
unmapped part of the bearing’s operational states or may 
correlate to a specific failure mode.

CASE STUDY 5 – LOAD PREDICTION  
WITH SOUND SIGNAL, FOR TRAINING  
WITH THE ACETAL BEARING AND TESTING  
ON THE PLEXIGLASS BEARING (2500 & 4000 RPM)

Summarising the findings of Case studies 1‒4, the application 
of ML algorithms to make predictions regarding the operational 
state of the bearing utilising the sound signal features extracted 
from the octave-band filter has been quite promising. In the 
previous case studies, training and test data were both extracted 
from the experimental data of one specific journal bearing. In 
this case study, the training data will be extracted from the data 
measured on the Acetal bearing and the testing data will be 
extracted from the data acquired from the Plexiglass bearing. 
It should be noted that the previous case studies were tested 
for both bearings and the results were identical.

Initially the training and test data of 8 & 14 N load at 
2500 rpm and the entire sound signal feature space (features 
#20‒#31) as well as the rpm are used. The RFC and KNN (k = 5) 
algorithms achieved accuracy of 100%. On the other hand, 
the GBR algorithm produced inaccurate results and a notable 
shift in the automatically selected high importance features is 
observed, thus these results are rejected. 

Aiming to find the minimum number of features necessary 
to predict the Plexiglass bearing’s loading condition, a different 
approach is tested. The importance of the features selected 
is evaluated for both the Plexiglass and the Acetal bearing, 
revealing that different frequency band features are the most 
important in each case. To solve this instability, a dataset 
consisting of data from both bearings is created and the 
feature selection is repeated, aiming to find the most important 
features for the group of similar bearings. Then the developed 
models could be trained, taking into account these features 
from the Acetal bearing dataset and tested for predictions on 
the Plexiglass bearing dataset. 

The rotational speed value tested is 4000 rpm and 2, 8 and 
14 N load cases are used for training but only 8 and 14 N for 
testing. The KNN algorithm was the most promising algorithm 

Tab. 7, 8. KNN, RFC confusion matrix, Case study 3b

PR
ED

IC
TE

D

KNN Confusion Matrix

2N 29.0% 0.0% 0.0% 100%

8N 0.0% 38.5c% 0.0% 100%

14N 0.0% 0.0% 32.5% 100%

Sum 100% 100% 100% 100%

2N 8N 14N Sum

ACTUAL VALUE

PR
ED

IC
TE

D

RFC Confusion Matrix

2N 30.8% 0.0% 0.0% 100%

8N 0.8% 29.2% 0.0% 97.2%

14N 0.0% 0.8% 38.4% 97.9%

Sum 97.4% 97.2% 100% 98.3%

2N 8N 14N Sum

ACTUAL VALUE



POLISH MARITIME RESEARCH, No 3/2021 147

tested in this case study. In Table 9 the prediction accuracy of 
the developed models is presented, taking into account one 
additional important feature, rebuilding the model iteratively 
four times, until 100% accuracy is achieved. 

In the last part of this case study, data at two rotational 
speed cases, namely 2500 & 4000 rpm, are combined in the 
feature selection process. Initially features #23, #20, #31, and 
#29 are used, achieving 81.82% accuracy with KNN, and then 
the next most important feature (#26) is added to achieve 100% 
prediction accuracy.

CASE STUDY 6 – TRAINING AND TESTING  
WITH ACETAL AND PLEXIGLASS BEARINGS, 
UTILISING SOUND SIGNAL

In this last case study, the goal is to examine the model 
accuracy utilising a mixed training and testing dataset from 
both the Acetal and the Plexiglass bearings. From the Acetal 
bearing operational state dataset the cases of; 2 N ‒ 4600 rpm 
and 14 N ‒ 1800 rpm are excluded to simulate some missing 
data “holes” on the grid boundary. Additionally, all the loading 
scenarios for 8 N and 14 N load of the Plexiglass bearing 
are utilised. The entire sound signal feature space (features 
#20‒#31) is included. Initially, the scope is to build a model 
able to identify the bearing class, namely Acetal or Plexiglass, 
and conduct feature selection. The most promising algorithms 
tested were the KNN and RFC, achieving 100% accuracy. 

The last but most important study includes the load label 
as the target value, given sound frequency features from both 
bearing datasets. The most promising algorithms tested with 
converging accuracy were the RFC and the GBR, starting 
with a feature importance selection followed by an optimum 
model development for predictions. The feature importance 

results of both algorithms are presented in Fig. 14. The features 
that contain the most essential information for both bearings 
are features #25 and #31, followed by feature #22. The overall 
prediction accuracy for RFC reached 100% and for GBR 
94.5%. This relatively high accuracy for both algorithms 
suggests that a dataset combining input from multiple similar 
bearings, manufactured according to the same design plan, 
can significantly improve the stability and accuracy of the 
produced model, ensuring a wider application range.

SUMMARY – CONCLUSIONS

In the present work a Machine Learning procedure has been 
developed, aiming at predicting the loading condition of journal 
bearings, utilising real-time sound and vibration measurements. 
To this end, a set of experiments has been set up and conducted. 
Two journal bearings of the same principal dimensions, but 
slightly different final dimensions, within the design tolerances, 
have been prepared and tested experimentally for different 
combinations of bearing load and journal rotational speed. 
The experiments have been performed utilising the Bently 
Nevada Rotor Kit 4 of the Laboratory of Marine Engineering 
at NTUA. A series of measurements has been performed with 
different combinations of rotational speed lying in the range of 
500‒4600 rpm, and bearing load ranging between 2, 8 and 14 N. 
A microphone and a triaxial accelerometer have been used to 
measure sound pressure and vibration signals generated during 
bearing operation. A one-third octave filter has been applied 
to post-process the obtained signals. The filtered signals have 
been segmented into shorter duration samples and have been 
fed to the ML algorithms.

ML algorithms utilising the sound signal provided more 
accurate predictions, with prediction accuracy of the order 
of 98‒100%; ML algorithms utilising the acceleration z signal 
were found to be second best with prediction accuracy results 
of the order of 85%. A variety of scenarios have been examined 
and the prediction accuracy of the algorithms has been shown 
to be adequate in most of the cases (more than 95%). The 
algorithms’ performance has been shown to vary, depending 
on the test data; the algorithms perform better if the test data 
belong to an intermediary training rpm‒load combination in 
comparison to cases where the test data belong to an extreme 
combination near the dataset boundaries. Additionally, it is 
possible to rank frequencies in terms of importance, using 
a feature selection process; however, this constitutes a case-
sensitive result, and further attention is required in order to 
generalise the conclusions.

Regarding the signal selection process, several important 
conclusions can been drawn: (i) Sound measurement signals 
contain more information regarding the system state, in 
comparison to vibration measurement signals; (ii) 1/3 octave 
band signal analysis is shown to be very effective in extracting 
the significant information from the signal; (iii) It is possible 
to determine the bearing loading condition from vibration 
measurements alone; however, the prediction accuracy 
is somewhat less in comparison to that corresponding to 

Tab. 9. Feature selection 4000 rpm, Case study 5

Feature Selection Table

Iteration Features Added Accuracy

1st 23 42.86%

2nd 20 71.43%

3rd 31 85.71%

4th 29 100%

Fig. 14. RFC and GBR feature importance chart, Case study 6
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sound measurements; (iv) For the development of a general 
bearing model, a wide range mapping of the bearing operating 
spectrum is required; (v) The use of multiple similar bearings 
for ML algorithm training may significantly improve their 
accuracy and trustworthiness.

In the present paper, the prediction of bearing load given 
the shaft rotational speed and utilising additional features 
extracted from vibration and sound signals (following the 
octave band analysis and ML) has been proven possible and 
a  promising technique for journal bearing performance 
assessment. Especially for marine applications, where line 
and stern tube bearings cannot be surveyed in real time, an 
early sign of bearing overload is of particular importance, in 
order to avoid situations of fast wear growth and failure. It is 
emphasised that, today, for the vast majority of such bearings, 
monitoring of the operational state is normally performed by 
oil temperature measurements. However, oil temperature rises 
due to bearing malfunction are generally observed after the 
phenomenon has evolved, leading in many cases to extensive 
or even catastrophic bearing failures. Therefore, the proposed 
methodology can be extremely efficient for real-time non-
intrusive bearing performance assessment.
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